UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Programa de Pós-Graduação

Disciplina: Análise Real Professor: Bruno Santiago Segunda Avaliação

Questão 1 (1pt). Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Prove que

$$\lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} f(t)dt = f(x),$$

para todo $x \in \mathbb{R}$.

Questão 2 (2pt). Considere a sequinte relação em \mathbb{R} : $x \equiv y \mod \mathbb{Z}$ quando $x - y \in \mathbb{Z}$.

- (a) 0.2pt: Verifique que isso define uma relação de equivalência em $\mathbb R$ e que para todo $x \in \mathbb{R}$ existe um único $y \in [0,1)$ tal que $x \equiv y \mod \mathbb{Z}$.
- (b) **1.8pt** Para cada $n \in \mathbb{N}$ seja $x_n \in [0,1)$ tal que $x_n \equiv \sqrt{n} \mod \mathbb{Z}$. Prove que $X = \mathbb{Z}$ $\{x_n; n \in \mathbb{N}\}\$ é denso no intervalo [0,1], i.e. $\overline{X} = [0,1]$.

Questão 3 (2 pt). Seja $f:[0,1] \rightarrow [0,1]$ uma função de classe C^1 satisfazendo f(0)=0 $e f(x) < x para todo x \in (0,1)$. Defina uma sequência $\{x_n\}_{n \in \mathbb{N}}$ recursivamente escolhendo $x_1 \in (0,1)$ e pondo $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$.

- (a) **0.5** pt Prove que $x_n \to 0$.
- (b) **1.5 pt** Suponha que $f'(0) = \lambda \in (0,1)$. Prove que $\sum_{n=1}^{\infty} x_n < \infty$.

Questão 4 (2 pt). Seja $f: [-1,1] \to \mathbb{R}$ uma função de classe C^2 com f(0) = 0, f'(0) = 1e f'(x) > 1 para todo x > 0. Seja $a_1 \in (0,1)$ e defina recursivamente a_{n+1} pela equação $f(a_{n+1}) = a_n$. Prove que

- (a) **0.5** pt $a_n \to 0$; (b) **1.5** pt $mas \sum_{n=1}^{\infty} a_n = \infty$.

Questão 5 (3pt). Seja $f:[0,1] \to [0,1]$ uma função contínua, bijetiva, monótona estritamente crescente satisfazendo f(0) = 0, f(1) = 1 e f(x) < x para todo $x \in (0,1)$. Seja $\tau : [0,1] \to \mathbb{R}$ uma função de classe C^1 . Para cada par de pontos $x, y \in (0,1)$ considere a sequência

$$\Phi_n(x,y) = |\sum_{j=0}^{n-1} \tau(f^j(x)) - \tau(f^j(y))|.$$

Prove que para todo $\varepsilon > 0$ existe um $\delta > 0$ tal que se $d(x,y) < \delta$ então $\Phi_n(x,y) < \varepsilon$, para todo $n \in \mathbb{N}$.

Questão 6 (3 pt). Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^{∞} tal que para todo $x \in \mathbb{R}$ existe $n \in \mathbb{N}$ de modo que a n-ésima derivada em x satisfaz $f^{(n)}(x) = 0$. Prove que f é um polinômio.