gauselim.m
function [x, err] = gauselim(A, b)
% Gaussian Elimination routine
%
% USAGE: [x, err] = gauselim(A, b)
% where A = square coefficient matrix, size n X n
% b = single RHS column vector, size n X 1
% x = solution column vector, size n X 1
% err = error code:
% = 0 = no error
% = 1 = singular matrix detected
% = 2 = not a square matrix
err = 0;
% check that input is legal
[n,m] = size(A);
if n ~= m
disp('Error in gauselim: Matrix must be square.')
err = 2; return
end
%set up space for solution vector
x = zeros(size(b));
% form augmented matrix by adding b to last column of A
m = n+1; A(:,m) = b;
% FORWARD ELIMINATION
for k = 1:n-1
[A, err] = gepivot(A, k); % partial pivoting
if err ~= 0
disp('Matrix is singular'); return
end
for i = k+1:n
term = A(i,k)/A(k,k);
for j = k+1:m
A(i,j) = A(i,j) - term*A(k,j);
end
end
end
% BACK SUBSTITUTION
if A(n,n) == 0
err = 1; disp('Matrix is singular'); return
end
x(n) = A(n,m)/A(n,n);
for i = n-1:-1:1
sum = 0;
for j = i+1:n
sum = sum + A(i,j)*x(j);
end
x(i) = (A(i,m) - sum) / A(i,i);
end