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ABSTRACT 

This paper attempts to describe some of the basic 
characteristics and issues involving the class of 
programming languages commonly referred to as 
"nonprocedural" or "very high level". The paper 
discusses major issues such as terminology, rela- 
tiveness, and arbitrary sequencing. Five features 
of nonprocedural languages are described, and a 
number of specific languages are discussed br ief-  
ly. A short history of the subject is included. 

Section I. INTRODUCTION 

I t  is characteristic of the programming f ie ld  
that much time and energy has been, and w i l l  con- 
tinue to be, spent on terminology. This is per- 
haps an indication of the youth as well as the 
rapid growth of the f ie ld.  As an i l lus t ra t ion  of 
the confusion in which we find ourselves today, 
consider the following l i s t  Of terms, each of 
which should be followed by the word "languages": 

very high level 
nonprocedural 
less procedural 
goal oriented 
problem oriented 
pattern directed 
declarative 
functional 
relational 
problem statement 
problem defini t ion 
problem description 
systems analysis 
specification 
result specification 
task description 

In addition to these terms, consider also the 
following: 

automatic programming 
a r t i f i c i a l  intell igence 

This l i s t  is not necessarily a complete set of al l  
the terms now being used by one or more groups of 
people to convey an in tu i t ive  notion of languages 
which in some sense are "higher" than FORTP~AN, 
COBOL, PL/I, etc. The most common term used for 
this concept has been nonprocedural, and the most 
common phrase has been "what" rather than "how". 
That phrase refers to the (potential) f a c i l i t y  of 

a user to indicate the goals (= "what") he wishes 
to achieve rather than the specific methods of 
solution (= "how") that must be used. As Feldman 
(1972, p. 15) points out, i f  these concepts could 
be carried out, then one could write 

FIND INTEGERS A,B,C AND N SUCH THAT N > 2 AND 

A N + B N = C N 
L 

which is, of course, Fermat's last theorem. 

While i t  is not possible to provide concrete defi- 
nitions of these terms, this paper attempts to 
provide some general principles and characteristics 
pertaining to this class of languages. I t  is im- 
portant to note that data def ini t ion languages are 
not included within the scope of this paper. Sec- 
tion 2 discusses some of the terminology and fun- 
damental concepts of very high level languages. 
Section 3 provides highlights of the historical 
developments in this area. Section 4 indicates 
the major features of nonprocedural languages. 
Section 5 discusses various classes of languages, 
specif ical ly business applications, nonsequencing, 
a r t i f i c i a l  intell igence, simulation and set or i-  
ented. Section 6 summarizes the key points of the 
paper. 

Section 2. OVER, ALL VIEW OF TERMINOLOGY AND 

FUNDAMENTAL CONCEPTS 

2.1 Introduction 

I t  is not possible (for reasons to be given in 
Section 2.2) to assert that a given programming 
language is nonprocedural in the absolute sense, 
but one can state that i t  possesses certain non- 
procedural features. What cr i ter ia  or features 
can be used to perform this characterization? Be- 
fore enumerating and discussing such cr i ter ia ,  i t  
is well to review some fundamental properties of 
programs and programming languages. The remainder 
of this paper uses the terms "programming languages" 
and "languages" interchangeably. 

In general, a program is a prescription for solving 
a particular problem. A procedure is a series of 
steps followed in a regular orderly def ini te way. 
Procedural programming is based to a great extent 
on the necessity to conform to the inherent sequen- 
t ia l  organization of the conventional (Von Neumann) 



digi tal  computer. Therefore, a possible def ini-  
tion of a nonprocedural program is that i t  is a 
prescription for solving a problem without regard 
to any arbitrary sequencing requirements. (A dis- 
cussion of what constitutes arbitrary sequencing 
and how i t  may be eliminated is given later. )  In 
a broader context we wi l l  say that a nonprocedural 
program is a prescription for solving a problem 
without regard to details of how i t  is solved. 
That is, the solution should be specified implic- 
i t l y  in terms of structures or abstractions which 
are relevant to the problem rather than those op- 
erations, data and control structures which are 
convenient for some machine organization. 

2.2 Relativeness 

The most important point to note is that the term 
nonprocedural is def in i t ive ly  relative and changes 
as the state of the art changes. 

The concept is elusive because nonproceduralness is 
not an absolute measurement but rather is an ever- 
moving target. Hence, i t  is better for everyone 
in the f ie ld  to recognize this once and for a l l  
than to assume a fixed meaning for the term. In 
many ways the term "less procedural" i f  better be- 
cause i t  makes very clear the relative nature of 
the concept. Note that "less procedural" involves 
a comparison of two languages whereas "nonproced- 
ural" can apply to only one. 

An examination of Figure l should make this clearer. 
A comparison of Figures l(a) and l(a*) shows the 
difference between assembly language and FORTP~AN- 
l ike languages. Prior to the existence of FORTP4~N, 
the expression A = (B + C) * D + E * F could be 
considered nonprocedural because i t  could not be 
written as one executable unit and translated by 
any program. Similarly, Figures l(b) and l(b*) in- 
dicate another level of relativeness since the 
FORTRAN program to do matrix mult ipl ication can be 
handled by one statement in APL. Finally, the i l -  
lustration of Figure l (c)  which is a program to 
CALCULATE THE SQUARE ROOT OF THE PRIME NUMBERS 
FROM 3 TO 95 AND PRINT IN 2 COLUMNS cannot be 
handled by any translating system known today. 
( I t  is essential to realize that the two forms 
shown in Figure l (c*)  are logical ly equivalent and 
the desi rabi l i ty  of one form over the other ( i .e . ,  
formal notation versus English) is a matter of 
personal preference.) The ab i l i t y  of a system to 
"understand English" is not at issue here; phrases 
that look l ike English may real ly depend on spe- 
c i f i c  programming techniques, e.g., pattern match- 
ing and macro expansion, rather than English gram- 
mar. Putting the same point another way (because 
of i ts fundamental significance in this matter), 
i t  is ent i rely possible to design a formal lan- 
guage for doing mathematical problems in which the 
statement CALCULATE THE SQUARE ROOT OF THE PRIME 
NUMBERS FROM 3 TO 95 AND PRINT IN TWO COLUMNS is 
acceptable. At the other extreme, a natural and 
elegant looking phrase such as FIND X SUCH THAT 

X 2 = 5 is real ly equivalent to invoking a square 
root routine. 

We actually have two types of relativeness: one 
involves the actual hardware and the other involves 
the problem or application area. In the case of 
the hardware we can only use as the base from which 

to measure, some particular machine or class of 
machines, e.g., the IBM System/360. As the machine 
changes, So does the relativeness. The reason that 
one must consider the machine is because certain 
terms or f ac i l i t i es  which might be available in one 
machine are not in another. Thus, prior to the 
ava i lab i l i t y  of f loating point instructions in any 
hardware, the capabil ity had to be included in the 
programming language, and thus would be considered 
higher level with respect to the machine. Once 
floating point became v i r tua l l y  universal on a com- 
puter i t  was removed from serious language consid- 
eration. We might consider now the concept of l i s t  
processing. I f  computers commonly had such instruc- 
tions bu i l t  in, then they would not be needed in a 
so-called higher level language. S t i l l  another 
hardware example involves the parallel execution of 
many statements and there are currently varying 
degrees of ava i lab i l i t y  of this hardware f a c i l i t y .  
Finally, the development of hardwired machines to 
implement languages which are high level by today's 
standards (e.g., SYMBOL(Chesley and Smith, 1971), 

and previously unimplemented proposals (e.g., FOR- 
TP~AN (Bashkow, 1967) and ALGOL 60 (Anderson, Ig61)) 
w i l l  require a major rethinking of this whole issue. 

The re la t i v i t y  to the application area depends on 
one's knowledge and experience. For example, i f  a 
person knows only one method of integration or one 
method of solving di f ferent ia l  equations, then a 
command which says INTEGPJ~TE, or SOLVE this d i f fe r -  
ential equation, may be considered to have a certain 
level relative to the knowledge of the user. A sys- 
tem l ike NAPSS (Synes, 1969) attempts to provide 
automatic numerical analysis and thus is very high 
level relat ive to the application. Similarly, the 
presence or absence of a SORT verb in a data proc- 
essing language creates di f ferent levels of proced- 
uralness. 

The use of top-down programming can be considered 
an indication of relativeness while s t i l l  using cur- 
rent languages. Thus, one uses successive pages and 
levels to indicate greater detail of portions of ex- 
ecutable code. 

One of the f i r s t  instances .in which i t  was realized 
-- albeit  with great reluctance -- that nonproced- 
uralness was real ly a relative term was by the CODA- 
SYL Language Structure Group (1962) which developed 
the Information Algebra. That work was or ig ina l ly  
viewed as being the development of a language which 
would be t ru ly  nonprocedural for data processing 
problems. The statement of the payroll program as 
given in the original report certainly looks on the 
surface as i f  i t  states only what is to be done 
rather than the details of how i t  is to be done. 
However, impl ic i t  even in a single equation of the 
IA is the notion of sequencing, i . e . ,  some steps 
must be done before others. Since the amount of 
sequencing is a major characteristic in distinguish- 
ing levels of proceduralness, i t  is worth exploring 
this point a l i t t l e  further. 

2.3 Sequencin 9 

There is a difference between sequencing across 
statements and within one statement. The former 
requirements tend to be obvious in a problem. How- 
ever, a single statement may or may not have se- 
quencing imbedded in i t ,  and i t  is not always obvious 



from looking at i t .  Sequencing is, of course, in- 
herent in any mathematical expression that has 
precedence among the operators. Any data depend- 
encies which are inherent in the problem state- 
ment also affect the sequencing by requiring the 
data to be obtained in the correct order. A 
t r i v i a l  i l lus t ra t ion of this is obvious by merely 
noting that one cannot produce outputs unt i l  after 
one has performed calculations on the inputs. 

I t  is interesting to note that some of the side 
effects which occur in some programming languages 
are real ly due to differences in handling the 
sequencing of subexpressions within a single 
statement. For example, i f  A = B + OBL(B) ~ere 
DBL is a bu i l t - in  function which doubles and up- 
dates B, then the sequence of performing the op- 
erations w i l l  determine whether the original 
value of B or i ts double is used to calculate A; 
hence, the value of A w i l l  depend upon the se- 
quence of computations on the r ight hand side. 

As another i l lus t ra t ion of the significance and 
relevance of sequencing, consider the problem 
statement shown in Figure l (c* ) .  This calculation 
could actually be performed in several ways. One 
way is to follow each number through the three 
"computations", i . e . ,  test for primeness, and i f  
the number is prime, then compute i ts square root 
and pr int  i t .  However, depending upon the part i-  
cular hardware and software, i t  might be more ef- 
f ic ient  to f i r s t  determine al l  the primes, then 
calculate al l  the square roots of th~ identi f ied 
primes, and then do all the printing. Obviously 
various combinations of these two extremes are also 
possible means of execution. Equally obviously, 
this is merely a prototype of a calculation involv- 
ing a sequence of tasks each of which supplies 
data to the next but where each input datum is 
independent of the others. The program given in 
Figure l (c)  chooses only one of the alternatives; 
no discretion is le f t  to the translator, whereas 
the statement in Figure l (c*)  could -- as indica- 
ted above -- be translated in several s igni f icant ly  
different ways (e.g., using coroutines (Conway, 
1963) which could have major impact on efficiency. 
The exp l ic i t  sequencing used in the program of 
Figure l (c)  is not required for solution of the 
problem. One way of characterizing nonprocedural- 
ness is to say that the sequencing of any informa- 
tion by the programmer (except that which is in- 
herent to the logic of the problem) is irrelevant. 

2.4 Miscellaneous Terms 

The term "automatic programming" in current term- 
inology is at least a partial synonym for nonpro- 
cedural, but the former tends to encompass some- 
what more. An attempt to indicate what is meant 
by automatic programming in today's environment 
was made by Balzer (1972). Of the many pages de- 
voted to this subject, i t  seems most appropriate 
to quote the following sentences from page lO: 
"There is a continuum between the statement of a 
problem in terms of i ts i n i t i a l  state and i ts goal 
state and a specification of how to do i t  in a 
machine language. Most of computer language de- 
velopment can be viewed as a movement from specify- 
ing HOW to do something towards a statement of WHAT 
is desired." 

The term "problem oriented" serves in part as a 
confusion factor. This term has frequently been 
used to mean those languages which were specif ical ly 
designed for a narrow application area, e.g., c i v i l  
engineering, CAI, equipment checkout. These lan- 
guages -- which have more appropriately been called 
languages for specialized application areas by 
Sammet (1972) -- frequently increase the level of 
nonproceduralness by comparison with the broader 
based languages such as PL/I. However, this is 
primarily because the commands are direct ly related 
to the problem domain, e.g., DETERMINE AREA, TEST 
VOLTAGE. Thus the level of the primitive operations 
have an effect on the level of proceduralness. In 
this conceptual area, the difference between a very 
simple (albeit  high level) programming language and 
application package is often blurred. A program- 
ming language contains a set of commands and has 
other features and fac i l i t i es  which can be applied 
f lex ib ly  within the problem domain. On the other 
hand, application packages generally (a) have fixed 
sets of routines and do not allow new ones to be 
added, (b) accept parameters as input, and (c) 
specify fixed f i l e  and data formats. Application 
packages usually have fixed sequences of routines 
but some allow the user to specify which routines 
are to be used and in what order. 

There is actually an existing class of languages 
which represents a nontrivial level of nonproced- 
uralness by today's standards -- namely the continu- 
ous and discrete simulation languages. In both 
instances the sequence in which statements are 
written is not necessarily the sequence in which 
they are executed. Nonproceduralness is also rela- 
ted to issues of parallelism and even an inherently 
procedural language such as PL/I allows the user to 
specify parallelism through the use of multitasking. 

2.5 Need for a Metric 

The need for metrics of some kind for measuring pro- 
gramming languages in general is discussed by Sam- 
met (1971). For a given computer, and a specified 
level of knowledge about an application area, one 
would like to have a metric to indicate various 
levels of (high level) languages. For example, one 
might decide to consider machine code as having a 
measure of l and increase the number as the language 
became closer to the problem. One of the many di f -  
f i cu l t ies  in carrying out such a scheme is that d i f -  
ferent features in a language real ly have dif ferent 
levels of nonproceduralness. 

Other ways of considering measures of nonprocedural- 
ness include specifying (a) the number of commands 
in the language and indicating which commands can 
actually be expressed in terms of others and hence 
are not basic; (b) the amount of information about 
the application domain that can or must be specified 
in the language; and (c) the amount of sequencing or 
parallelism that is involved. 

Some people feel that i t  may be impossible to achieve 
any meaningful metric. 

2.6 Language Versus Its Implementation 

There is obviously a large difference between the 
language i t se l f  and the methodology or system which 
underlies or implements the language. For example, 
a particular system may actually provide several 



methods of executing a particular task (e.g., sort- 
ing, solution of dif ferential equations). These 
methods may be imbedded in the system and the 
selection actually made by the system i t se l f  to 
provide the best solution based on an analysis of 
the parameters. 

I t  is clear that a large part of the problem in 
implementing nonprocedural languages (or in auto- 
matic programming systems), pertains to efficiency. 
Thus, we could specify problems and their general 
solutions more easily i f  we were not so concerned 
about the ef f ic ient  use of machine time. Clearly, 
as the economics continue to shrink machine costs 
and increase people costs, thls w i l l  no longer be 
significant. On the other hand, a less procedural 
language might actually increase efficiency by al- 
lowing the compiler to optimize for a particular 
machine based on a higher level of intent. 

2.7 Verification of Objectives 

We do not currently -- and probably never w i l l  -- 
have any accurate way of ensuring that the person 
states exactly and precisely what he wishes to 
accomplish. The inaccuracy occurs at two levels 
-- one is the lack of a suitable language in which 
to express objectives and the other is the normal 
human tendency to be imprecise in knowing what is 
wanted. Relating this to current terminology, we 
need -- but don't have -- good assertion (= spe- 
cif ication) languages. I t  is possible that tech- 
niques of proving programs correct could be used 
to design better specification languages. Note 
that at al l  levels of proving correctness the 
verif ication of the compiler i t se l f  is part of 
the problem. 

What we have is a situation in which the user may 
intone the famous phrase, "Do as I say, not as I 
do". The paraphrase that would be appropriate for 
the computer f ie ld would be, "Do what I want you 
to do, not what I asked you to do". 

Section 3. HISTORY 

I t  is beyond the scope of this paper to give a de- 
tailed history of the terms and act iv i t ies in this 
area, but i t  is appropriate to indicate a few high- 
l ights. In the very early stages of programming, 
i .e . ,  in the f i r s t  half of the 1950's, the phrase 
"automatic programming" was used to mean the proc- 
ess of writing a program in some higher level lan- 
guage. In that context, "higher level" was by 
comparison with machine code. As time went on, i t  
became clear that the coding was only a portion of 
the entire problem solving task and therefore the 
phrase "automatic coding" came into use as meaning 
the use of a language such as FORTI~AN. Thus, even 
in the very early days the proper distinction was 
made between coding (which is one aspect of the 
entire programming task) and the larger act iv i ty  of 
programming. One of the f i r s t  attempts at provid- 
ing general information in a framework that might 
be called automatic programming was that by Young 
and Kent (1958). Using their work, and other in- 
puts (e.g., SHARE Theory of Information Committee) 
the CODASYL Language Structure Group (1962) de- 
veloped the Information Algebra. I t  is essentially 
a mathematically-oriented way of describing a data 
processing application in terms of the input-output 
relationships; these are actually defined by means 

of transformations on sets of entit ies called areas 
(which are analogous to f i l es ) .  The Information 
Algebra was used experimentally (Katz and McGee, 
1963), but has never been developed to the point of 
significant implementation. Some extensions and 
modifications to these concepts were made by Lincoln 
(1971), Kobayashi (1972) and Morgenstern (1973). 

A narrow approach, but one that is nevertheless in 
the sp i r i t  of less proceduralness, is exemplified 
in the early work on Report Program Generators and 
Decision Tables. 

Various individuals and groups addressed parts of 
this problem. Homer (1966) proposed a system in 
which the user specified the input variables with 
their values, the functions involving the variables, 
and a l i s t  of output variables. The user did not 
need to supply this information in the correct se- 
quence; the system was responsible for doing that 
and specific algorithms for achieving this were 
presented. I t  is not known to the authors whether 
this was ever implemented. 

One of the ways to minimize the importance of se- 
quencing is to allow the programmer to specif ical ly 
designate which sets of statements can be done si-  
multaneously. One of the earl iest published sug- 
gestions for this is the set of "DO TOGETHER" and 
"HOLD" statements suggested by Opler (1965). A sur- 
vey of other suggestions is given by Gosden (1966) 
which also contains a good bibliography on parallel 
processing from the viewpoint of language, operating 
systems, and proposed hardware. 

By comparison with languages such as FORTP~AN and 
COBOL, the string and pattern directed languages 
such as COMIT and SNOBOL contained less procedural- 
ness .  

Various experimental attempts at having the system 
do automatic numerical analysis include POSE (Schles- 
inger and Sashkin, 1967) and NAPSS (Synes, 1969). 

In the late 1960's, a system called Absys l was im- 
plemented at the University of Aberdeen by Foster 
and Elcock (1969). This language was bui l t  on the 
concept of having the user specify assertions rather 
than commands. Thus, the user would write X = Y, 
Y = 2 in any order and the system would automatically 
assign the value Of 2 to X. The system also causes 
programs to terminate unsuccessfully i f  the con- 
straints are unsatisfiable. 

Aside from these cited act iv i t ies and some related 
concepts in a r t i f i c i a l  intelligence which are dis- 
cussed in later sections, no other major developments 
took place. Some specific work started in the late 
1960's and early 1970's and is discussed in Section 
5. The major areas of current act iv i ty  in automatic 
programming which are related to nonprocedural lan- 
guages are the ISDOS Project at the University of 
Michigan and the Automatic Programing Project at MIT. 
(The Automatic Programming Laboratory at Harvard 
real ly deals with a different class of problems.) 

Section 4. FEATURES OF NONPROCEDURAL LANGUAGES 

4.1 Introduction 

This section discusses 5 features which are deemed of 



major importance for inclusion in a programming 
language which purports to be nonprocedural, or 
which intends to lower the level of procedural- 
ness. Some examples of languages possessing some 
of these features are given. (To some extent the 
material here overlaps sl ight ly the discussion of 
terminology and characteristics in Sections 2 and 
5, but this is unavoidable. This section concen- 
trates on specific features, whereas Section 2 was 
emphasizing general characteristics and Section 5 
emphasizes specific languages.) 

4.2 Associative Referencing 

We wi l l  use the term associative referencing to 
refer to the accessing of data based on some in- 
t r insic property of the data. Associative refer- 
encing is usually provided in those languages 
that contain sets (see Section 5.6) as a data 
structure. The operation of selecting elements 
from previously defined sets, and of defining new 
sets from old based on some property of the mem- 
bers is sometimes called the "set former" (see, 
for example, SETL (Schwartz, 1973) and MADCAP 
(Morris and Wells, 1972)). The importance of 
associative referencing in nonprocedural languages 
is that the programmer does not have to specify 
access paths expl ic i t ly  or program an algorithm 
to conduct a search for a specific data structure. 

The LEAP language (Feldman and Rovner, 1969) is an 
important example of a conventional language 
(ALGOL) extended to accommodate sets and associa- 
t ive referencing. The paper is also interesting 
because i t  describes a hash-coded software refer- 
encing scheme which has been implemented. Lan- 
guage constructs were also described by Balzer 
(1967) for searching a "data collection" for 
members satisfying a given condition, but this 
proposal was never implemented to the authors' 
knowledge. Associative referencing is also con- 
tained in such disparate languages as SIMSCRIPT, 
STDS (Childs, 1968), TP~AMP (Ash and Sibley, 1968), 
MacAIMS (Strnad, 1971), Codd's ALPHA language 
(Codd, 1971), SETL, and undoubtedly many more. 

Codd (1972) defines algebraic operations on rela- 
tions (Codd, 1970) which give a measure of the 
relative power of a language with respect to this 
type of data structure. In addition to the tra- 
ditional set operations of Cartesian product, 
union, intersection, etc., he defines the rela- 
tional operations of projection, join, division, 
and restriction. These operators (see Aggregate 
Operators below) effectively provide various types 
of associative referencing. 

I t  is clear that associative referencing and the 
supporting data structures are important compo- 
nents of nonprocedural languages, and represent an 
area in which much work remains to be done. 

4.3 Aggregate Operators 

I t  is possible to avoid writing loops in some pro- 
gramming languages that provide aggregate opera- 
tors. The polymorphic operators in APL are ex- 
amples of operators that apply equally to scalars 
and aggregates, and that distribute over entire 
aggregates. In some cases the PL/I programmer can 
avoid loops by using certain operators which dis- 
tribute over entire arrays or structures. There 

seems in general to be a close relationship between 
associative referencing and the aggregate operators 
we are discussing. I t  is certainly clear that the 
algebraic operators defined by Codd (see above) on 
relations are aggregate operators. I t  cannot be 
denied that the elimination of expl ic i t  sequencing 
by the means discussed above is t ruly a nonproced- 
ural feature. 

Two interesting aggregate operators which are use- 
ful in data processing applications are the bundle 
and glump operators proposed in the Information 
Algebra (CODASYL, 1962). The glump operator par- 
t i t ions an area (which is l ike a f i l e )  into subsets 
called elements such that an element contains al l  
entit ies in the area having identical values for 
the given glump operator. The glump operation is 
used for grouping and summarization purposes, typi- 
cal tasks in data processing. The bundle operator 
works on an ordered set of areas and, for each mem- 
ber of the Cartesian product, selects only those 
entit ies meeting a certain condition (such as equal- 
i ty  of values in a particular domain). 

The design and development of suitable aggregate 
operators is an important act iv i ty  in nonprocedural 
languages. 

4.4 Elimination of Arbitrary Sequencing 

We wi l l  define arbitrary sequencing as any sequenc- 
ing which is not dictated by the data dependencies 
of the application. In a functional program (see 
below), data dependencies are shown exp l ic i t ly  by 
the operator-operand structure of the program. 

A functional programming language is one that does 
not contain either assignment or goto statements. 
As such, "functional" appears to be a synonym for 
"nonprocedural" since i t  is more involved with 
specifying the outcome desired as a function of the 
inputs, rather than indicating a step by step se- 
quence of program steps. A program in a functional 
language such as pure LISP avoids side effects which 
are a concomitant of procedural programming. A side 
effect is caused in procedural languages by the mod- 
i f icat ion of memory by the assignment statement. 
Pure functional languages produce no side effects 
since they have no assignment operation and cannot 
modify memory during expression evaluation. 

Landin (1966) characterizes functional programs as a 
way of "describing things in terms of other things", 
and shows that this approach leads to the elimina- 
tion of expl ic i t  sequencing. One example of func- 
tional programming would be APL "one liners" (with- 
out assignments, or without function calls with side 
effects). I f  a program satisfies the "single assign- 
ment" property (Tesler and Enea, 1968), ( i .e . ,  i f  no 
variable is assigned values by more than one state- 
ment), then the order of the statements is immater- 
ia l ,  and the correct program sequence can be deter- 
mined by dependency analysis. I t  turns out that a 
single assignment program is real ly a functional 
program in disguise, where the intermediate results 
of computation are given expl ic i t  names..An inter- 
esting class of languages recently defined are the 
Red languages (Backus, 1972) which use no variables, 
no goto statements, and no bui l t - in comprehension of 
recursively defined functions. 



The ultimate expression of lack of arbitrary se- 
quencing (perhaps we should use the term minimum 
sequencing) is a pure data flow programming lan- 
guage (see, for example, Kosinski, 1973). In this 
formalism, an application is decomposed into a set 
of modules which communicate with one another only 
at module interfaces. One module cannot consume 
a particular value until i t  is produced by another 
module, and conversely. The sequencing is governed 
s t r i c t l y  by data dependencies (see, for example, 
Figure l (c) ) .  This type of sequencin~ control can 
be provided by a coroutine structure (Conway, 1963). 
The best example of a well-known data flow pro- 
gramming language is GPSS (General Purpose Systems 
Simulator) in which sequencing of a simulation 
program is controlled by transactions (data) mov- 
ing through the model. 

4.5 Nondeterministic Programming and Parallelism 

Faci l i t ies for nondeterministic programming appear 
in most of the a r t i f i c i a l  intelligence languages 
(see Section 5.4) and were inspired by Floyd (1967) 
who introduced new programming primitives for solv- 
ing combinatorial problems. Essentially the prim- 
i t ives include the following: 

(1) a multiple valued function called choice 
(n) whose values are the integers from l 
to n 

(2) a success function, and 

(3) a fai lure function. 

The choice function causes a multiple branch in the 
execution of the program, each path being concept- 
ually computed in paral lel,  with i ts own particular 
value of the choice as an argument. The success 
and fai lure functions label termination points of 
the computation. However, only those termination 
points labeled as success are considered to be com- 
putations of the algorithm. In other respects, a 
nondeterministic program using these primitives re- 
sembles a conventional program. In this approach, 
as described by Floyd, "a process with a very com- 
plicated control structure is represented by an 
algorithm with a simpler structure for an imaginary 
processor, and then converted to a more complicated 
algorithm for a conventional processor". This pre- 
scription describes a fundamental characteristic of 
nonprocedural programming. I t  must be emphasized 
here that the word "nondeterministic" used in the 
present context does not mean probabilistic but 
rather having a free choice. 

In most cases, nondeterministic programs are exe- 
cuted as backtracking algorithms (Golomb and Bau- 
mert, 1965), and i t  is the hiding of the bookkeep- 
ing details of the backtracking (saving and restor- 
ing of the values of variables at branch points) 
that gives nondeterministic programming its nonpro- 
cedural flavor. Backtracking refers to a depth 
f i r s t  tree search and is an important component of 
PLANNER (Hewitt, 1971) and other AI languages. 
Another method of implementing nondeterministic al- 
gorithms is called multiple-tracking (Irons, 1970) 
and refers to a breadth f i r s t  search, which is use- 
ful in situations where the backtracking process 
does not terminate. 

There is a close correspondence between nondetermin- 
i s t i c  programming and parallel programming in that 

the multiple paths of the choice function could be 
executed in parallel. The existence of inherent 
parallelism can be exhibited either naturally in a 
data flow language, or can be analyzed and detected 
in a more conventional programming language, such 
as FORTRAN IV (Russell, 1969 and Volansky, 1970). 
Use of statements such as FORK and JOIN (Ander- 
son, 1965) provide the user with the f a c i l i t y  to 
specify allowable parallelism, but simultaneously 
increase the amount of information he is supplying 
about the problem. 

Communication and synchronization between concurrent 
processes is an important subject and has been ex- 
tensively covered in the l i terature, but with primary 
emphasis on operating systems. A fundamental paper 
on this topic is by Dijkstra (1968). 

Parallel processes appear in the multitasking f a c i l i -  
ties of PL/I, the collateral executions of ALGOL 68, 
the multiple paths in ECL (Cheatham and Wegbreit, 
1972), and in the multiple processes of SAIL (Feld- 
man, et a l . ,  1972). 

4.6 Pattern Directed Structures 

The classical example of a pattern directed structure 
is given by Markov algorithms. A Markov algorithm 
consists of a set of replacement or substitution. 
rules which are repeatedly applied to an input string 
of symbols. The sequencing algorithm is impl ic i t  in 
that the rules are always applied in a determined 
order. Each rule consists essentially of the direc- 
t ive: i f  a specified string is contained in the cur- 
rent input string, then replace i t  with a given 
string of symbols. Although replacement rul~s are, 
in general, order dependent, pattern matching is non- 
procedural in the sense that i ts execution involves 
a complicated series of steps. The SNOBOL language 
is an extension and enhancement of the Markov algor- 
ithm idea where, however, the programmer is allowed 
to depart from the normal sequential control. The 
pattern directed string replacement rule in SNOBOL is 
nonprocedural in the sense that the more detailed 
specification of this process in a more "conventional" 
language would surely require a nondeterministic 
sequence of steps, or an even more complicated de- 
terministic program. 

The specification of a context free grammar in BNF is 
an example of a set of rewriting rules that are order 
independent. The CONVERT package (Guzman and Mcln- 
tosh, 1966) is an example of the introduction of pat- 
tern matching fac i l i t i es  into LISP. A more recent ex- 
tension to LISP emphasizing the role of pattern direct- 
ed structures is embodied in the LISP 70 language de- 
veloped at Stanford (Tesler e t a l . ,  1973). 

Pattern directed structures are incorporated in the 
PLANNER language in a fundamental way. Specifically, 
PLANNER includes a pattern directed data base search, 
and the pattern directed invocation of procedures. 
The pattern directed data base search allows the user 
to ask for data items called assertions which match a 
given pattern, while pattern directed procedure invo- 
cation has the capability to in i t ia te  tasks of the 
form "call a subroutine which wi l l  achieve the desired 
result at this point" (Sussman, et a l . ,  1971). I t  is 
noteworthy that program m o n i t o r i ~ y  be considered 
to be a generalization of pattern directed invocation 
of procedures where the pattern is being continuously 
matched against the object to be monitored (Fisher, 1970). 



Pattern matching is intimately associated with 
nondeterministic programming, but is probably less 
procedural than the lat ter.  However, i t  may be 
that to solve more complicated problems, the pro- 
grammer has to give more hints to the program, pos- 
sibly in procedural form. I t  is clear that pattern 
matching is related to, and,conceptually similar 
to, associative referencing of data. 

Section 5. SPECIFIC LANGUAGES 

5.1. Introduction 

There are so many languages which exhibit some of 
the major characteristics of nonprocedural lan- 
guages that i t  is not possible to describe them 
a l l .  Furthermore, since they tend to fa l l  into 
groupings based on either application area or 
technical approach, they are being discussed in 
such groups. I t  is essential to realize that the 
dist inct ion between a "language" and a "language 
system" becomes very fuzzy when dealing with these 
developments; the reader is cautioned to understand 
that the "languages" mentioned may in rea l i ty  be a 
part of a larger system which is providing s ign i f i -  
cant support for the language i t se l f .  

5.2 Business Applications Languages 

One of the areas in which considerable work has 
been done to develop very high level languages is 
the area commonly called business data processing. 
Depending upon the group doing the work, the lan- 
guage(s) may be developed either for this whole 
application area or specific portions thereof. In 
addition to all the other d i f f i cu l t i es  pointed out 
in earl ier sections, there is another continuum 
which makes i t  d i f f i c u l t  to make clear-cut dist inc- 
tions. At one end is a specific query, while at 
the other end is an impl ic i t  calculation in which 
the system must essentially carry out an unspecified 
sequence of computations and/or retrievals to obtain 
the desired result. In order to make this continuum 
more obvious, consider the following statements in 
a restricted form of English: 

a) FIND ALL PEOPLE IN DEPARTMENT A WHO MAKE 
MORE THAN $B. 

b) FIND THE AVERAGE SALARY OF ALL PEOPLE IN 
DEPARTMENT A WHO MAKE MORE THAN SB. 

In the f i r s t  case this is a standard query which can 
be answered on most data base management systems. 
However, i f  only the second statement is given, 
there is a great deal of unspecified processing re- 
quired because the system must f i r s t  f ind al l  the 
relevant people, then apply the concept of "aver- 
age", and then perform the computation. Thus, gen- 
eral data base management systems themselves have 
many of the characteristics of very high level lan- 
guages. 

While i t  is beyond the scope of this paper to dis- 
cuss the issue of communicating with the computer 
in English, i t  is nevertheless true that this ap- 
proach is being taken by most groups working in 
this area. This tends to be done in three di f fer-  
ent ways -- ( i )  by a restricted formal language 
which looks l ike English; ( i i )  by a set of impera- 
t ive statements or questions in "natural English"; 
and ( i i i )  by a questionnaire from the computer to 
the person wherein the responses are considerably 

limited but s t i l l  in English. 

Both ( i i )  and ( i i i )  are objectives of the MIT Auto- 
matic Programming Group under W. Martin which is 
developing several levels of language within the 
framework of a system called Protosystem I (Project 
MAC, 1973). One of these is MAPL, which is a lan- 
guage for building relational models of the world. 
The la t ter  is considered to be made up of a collec- 
tion of objects which are divided into subsets and 
where the concept "a kind of" is allowed. A sig- 
n i f icant  part of their  approach is the use of a 
questionnaire which is carefully designed for  a par- 
t icu lar  specialized application area. The user w i l l  
answer the questions, and also communicate more in- 
formation about the details of his problem in a 
"natural English". From this information the system 
w i l l  translate to successively lower levels of lan- 
guage for eventual execution. I t  is expected that 
this process w i l l  be i terat ive in the sense that the 
user may be asked for further details after an in i -  
t ia l  processing of the questionnaire information. 
Furthermore, the user w i l l  be given the opportunity 
to determine that the program generated by the sys- 
tem is what he real ly wants; this is deemed essential 
because the user is specifying the "what" and the 
system is determining the "how". 

The ISDOS project under D. Teichroew and A. Merten 
at the University of Michigan emphasizes what they 
refer to as "problem statement languages" (which are 
essentially the same as what Sammet calls "problem 
defining languages"). As with various other concept- 
ually similar approaches, they wish to distinguish 
carefully between the specifications and requirements 
of the problem on one hand, and the method of achiev- 
ing these on the other. For example, a requirement 
might be that pay checks should be printed in alpha- 
betical order, but this is quite dif ferent from hav- 
ing a user specify "SORT" as a statement in a program. 
The la t ter  might be unnecessary as a command i f  other 
aspects of the system design caused an alphabetical 
sequence to occur automatically. 

In the framework of the ISDOS project, i t  is expected 
that users w i l l  write a problem description in PSL 
(Problem Statement Language) and this w i l l  be analyzed 
by the PSA (Problem Statement Analyzer). PSL is de- 
signed to provide the Problem Definer ( i .e . ,  today's 
systems analyst) with a better method of stating the 
requirements for an information processing system. 
A careful dist inction is made between the lat ter ,  and 
the programs which implement these requirements. 
Stating requirements is done in the current version 
being developed, namely PSL/II (Hershey, et a l . ,  1973), 
which allows for 8 sections in the problem statements. 
The analyst writes one or more of these sections in a 
top-down fashion providing more detail at lower levels. 
The intermediate level of ~aving the system make de- 
sign decisions on f i l e  formats and structure of pro- 
grams was being worked on in mid-1973. Relating this 
to Section 4, extensions to the Problem Statement Lan- 
guage w i l l  probably provide some associative reference 
and aggregate operators and presumably w i l l  concen- 
trate heavily on eliminating arbitrary sequencing. 

Other languages in this same general area are mention- 
ed or described in survey papers by Teichroew (1972) 
and Couger (1973) and w i l l  not be repeated here. The 
major ones mentioned are ADS, Hoskyns System, Infor- 
mation Albegra, PSL, and TAG. The key concepts of the 



Information Algebra were stated in Sections 3 and 4 
of this paper. ADS (Lynch, 1969) and TAG (IBM) 
basically consist of a set of forms describing an 
entire application which are f i l l ed  out by the user 
or system analyst and then machine-analyzed for use 
by programmers and f i l e  designers. I f  the forms 
could be translated to working programs, then we 
would actually have an extension of RPG concepts 
from a single program to a whole set of programs, 
i .e . ,  a fu l l  application or system. According to 
Couger (1973), "the Hoskyns system accepts system 
specifications and converts them to COBOL programs 
without manual intervention". 

5.3 "Nonsequencing" Languages 

As stated in Section 4.4, one of the key character- 
ist ics of a "less procedural" language is to mini- 
mize the amount of sequencing specified by the pro- 
grammer. In particular, i t  is desiraEble to be able 
to distinguish between the order of evaluation and 
the ordering of statements in the source program. 
While many of the specific languages discussed in 
Section 5 have this characteristic, the languages 
mentioned here tend to emphasize (directly or in- 
directly) this fac i l i t y .  

Continuous simulation languages (e.g., CSSL (SCi, 
1967), CSMP (IBM)) have had this capability for 
years. As a very simple example, the user might 
write the following equations, where T is an in- 
dependent variable: 

X = R cos A 

R = 50.0 

Z=WT 

W= 5.0 

The compiler would automatically rearrange these to 
be 

W=5.0 

Z=WT 

R = 50.0 

X = R cos A 

While this is quite t r i v i a l  and could be done 
equally easily by the user, in large simulations 
involving many interrelated equations with many 
variables, the rearrangement is laborious and error 
prone and can be done more easily by a computer. 

Another relevant aspect of the continuous simula- 
tion languages is that they are frequently used to 
model analog computers which have many computations 
occurring simultaneously. To handle this d ig i ta l l y  
(and hence, sequentially), the compiler must auto- 
matically cause certain computations to be tempor- 
a r i l y  deferred; this is most noticeable in dealing 
with the (numerical) solution of several differen- 
t ia l  equations. 

One of the most significant of the more general lan- 
guages with this approach is the interactive lan- 
guage ABSET being developed at the Computer Research 
Group at the University of Aberdeen, Scotland. (See 
Elcock, 1971.) A key element in their language is 
the use of sets in which the user is allowed to say 
"this is true for al l  members of this set" and the 
notions of TRUE and FALSE are appropriately applied. 

A simple i l lustrat ion of the application of the lat-  
ter together with a deduction from the stated asser- 
tions is the following: 

A + B = 3 AND A = l ;  

From this the interpreter deduces that B = 2 since 
the meaning of AND requires that the two halves of 
the f i r s t  statement are both true. 

A proposed -- but unimplemented -- approach to this 
is Compel (Compute Parallel) described by Tesler 
and Enea ( l ~ .  They pro-pose that al l  variables in 
each statement belong to two mutually exclusive 
groups: Input, Output. All rules on statement se- 
quencing are replaced by the rule "The statement that 
outputs variable A must be executed before every 
statement that either inputs A or inputs some B such 
that B depends on A". 

5.4 Ar t i f i c ia l  Intelligence Languages 

Mention has been made before of the distinction be- 
tween stating what is to be done and how to do i t .  
In stating what is to be done, an individual is in 
some sense describing the problem, or stating what 
results are required. When we discuss methods of 
solving problems, we may be in the domain of a r t i f i -  
cial intelligence, which cannot be discussed here for 
lack of space. However, languages which have been 
developed in the AI f ie ld  have features which allow 
the user to think about and specify his problem in a 
nonprocedural way. 

The PLANNER language is important and wi l l  be empha- 
sized here because i t  is the archetype of a class of 
nonprocedural and "problem solving" languages in the 
a r t i f i c i a l  intelligence f ie ld .  PLANNER is a mixture 
of programming and theorem proving techniques and, as 
stated earl ier,  incorporates three basic ideas: 

automatic backtracking 

pattern directed data base search 

pattern directed invocation of 
procedures 

Backtracking has been mentioned previously in Section 
4.5. 

Pattern directed data base search is a generalization 
of associative referencing and allows the user to ask 
for data items called assertions in the data base 
which match a given pattern. 

Pattern directed invocation of procedures allows a pro- 
cedure to be invoked not by i ts name but by the func- 
tion that i t  performs. I t  also allows a set of recom- 
mendations to be specified which controls the pattern 
match algorithm so that alternatives are tr ied in a 
particular order. Pattern directed invocation real ly 
"constitutes a new view of programming based not on the 
traditional hierarchical organization of a set of sub- 
routines, but rather on a set of cooperating asynchro- 
nous modules". (Balzer, 1972). 

CONNIVER (Sussman and McDermott, 1972) is an extension 
and modification to PLANNER in which automatic back- 
tracking is eliminated. I t  is argued that automatic 
backtracking almost forces the user to regard al l  his 
problem solving methods as independent. That is, 
backtracking provides a mechanism for generating 



alternatives and for erasing the consequences of an 
alternative which is later found to be untenable. 
CONNIVER provides local environments or contexts 
for each alternative to which changes can be made. 
CONNIVER is an attempt to exploit al l  the "good" 
ideas in PLANNER by providing some primitives ori-  
ginally hidden in PLANNER, and by concentrating 
more on the programming aspects of the language 
rather than on the theorem proving orientation. 

The QA4 language (Derksen et a l . ,  1972) which is 
based on QA3 (Green, 1969i ~ m i l a r  in many re- 
spects to PLANNER (for example, heavy reliance on 
pattern matching and bui l t - in  backtracking). How- 
ever, QA4 relies more on the use of sets, whereas 
PLANNER would implement the same features by using 
more complex procedures. QA4 also has the concept 
of "bags" which are l ike sets except that they 
allow several instances of the same element; this 
simplifies many arithmetic problems. QA4 also has 
a context mechanism which allows the storing of 
conditional plans (sequences of operators) under 
different contexts or alternative contingencies. 

SAIL (Feldman, et a l . ,  1972) is a dialect of ALGOL 
60 and was developed primarily with the Stanford 
Hand-Eye System in mind. I t  is based on the asso- 
ciative processing features of LEAP but contains 
many new features such as backtracking and match- 
ing procedures. Matching procedures are somewhat 
similar to IPL-V "generators" and are used to gen- 
erate strategies, and for coding of complex asso- 
ciative contexts. SAIL has sets and l i s ts  as data 
structures, and a new data type called a "context" 
which is useful for state saving and backup. SAIL 
contains multiple processes and follows the impor- 
tant principle that an occurrence in one process 
can influence the flow of control in other process- 
es. 

REF-ARF (Fikes, 1970) consists of a nondeterministic 
language for stating problems and a processor that 
attempts to find a successful execution of the non- 
deterministic program. 

GOL (Pople, 1972) is a LISP extension for nondeter- 
ministic programming and is similar to PLANNER in 
some respects, except that GOL uses semantic methods 
to generate i ts state space, rather than syntactic, 
or deductive methods. 

The following systems, while more properly described 
as application programs than languages, are included 
because they i l lust rate problem solving features 
which might be useful in nonprocedural programming 
languages. 

The STRIPS system (Fikes and Nilsson, 1971) is a 
problem solving program that attempts to find a se- 
quence of operators that transform a given i n i t i a l  
model (configuration) into a model in which a given 
goal formula is true. STRIPS represents a model as 
a collection of formulas in the f i rst-order predi- 
cate calculus, and uses a resolution approach (Rob- 
inson, 1965) to theorem proving in order to answer 
questions about the model. 

Another system, called PROW {Waldinger and Lee, 
]969), generates programs from descriptions of their 
inputs and outputs in the predicate calculus and 
also uses a resolution theorem prover. A similar 

use of the predicate calculus as a programming lan- 
guage, but not using an automatic theorem prover, is 
i l lustrated by Manna and Waldinger (1971). 

DENDRAL (Feigenbaum, et a l . ,  1971), which analyzes 
mass spectrograph data, is interesting because i t  
demonstrates the effective incorporation of domain 
specific information into an a r t i f i c i a l  intelligence 
environment. 

5.5 Simulation Languages 

Simulation languages introduced nonprocedural con- 
cepts in essentially two areas: associative refer- 
encing and the concept of a "process". Although as- 
sociative referencing was not a particularly new 
idea at the time, SIMSCRIPT introduced the concept 
of representing and modeling systems in terms of en- 
t i t i es  and their attributes, and the referencing and 
updating of data items based on indirect addressing 
of their properties rather than on an expl ic i t  
search. Both LISP and IPL-V used the notion of prop- 
erty l i s ts  but did not exploit this idea in quite 
the same way as SIMSCRIPT. 

GPSS has been attractive to nonprogrammers because 
of i ts block diagram, or flow graph, orientation and 
the fact that sequencing of transactions was deter- 
mined by properties of the data and state configura- 
tions of the system, rather than by expl ic i t  control 
flow specification in more conventional programming 
ianguages. The process concept, as typif ied by GPSS 
and by the original SIMULA (Dahl and Nygaard, 1966), 
is a method of discretely simulating concurrency in 
the real world, and is nonprocedural because the de- 
ta i ls  of the sequencing and scheduling of processes 
is hidden from the programmer. This style of pro- 
gramming, using primitives such as ACTIVATE, HOLD, 
WAIT and TERMINATE (in SIMULA) has been called quasi- 
parallel programming (Knuth, 1968). 

Continuous simulation languages generally involve re- 
sequencing of equations specified by the user and are 
i l lustrated in Section 5.3. 

5.6 Set Oriented Languages 

The traditional aggregate data structures in program- 
ming languages have been arrays where the concepts of 
indexing and sequencing have been important. Lan- 
guages which provide sets as data structures do not 
rely on the relative position of data items in the 
sets for accessing purposes, but make use of associa- 
t ive referencing as discussed earl ier. 

We wi l l  discuss the languages SETL (Schwartz, 1973) 
and MADCAP (Morris and Wells, 1972) as representative 
of a class of set oriented langauges. (ABSET, which 
also has set operations, was mentioned in Section 5.3.) 
SETL is a very high level mathematically oriented lan- 
guage. Its important composite data structures are 
f in i te  unordered sets, tuples, and functions. The 
set operations in both languages are very similar ex- 
cept that SETL allows heterogeneous sets. Functions 
in both SETL and MADCAP are not only available in the 
conventional sense but can also be represented by sets 
of tuples, i . e . ,  relations. 

Both languages have a "set former" capability which is 
to say that they provide associative referencing on 
the elements of sets. SETL has a "compound operator" 
which works very much l ike the APL reduction operator, 



and both languages have other constructions which 
can be used to obviate loops in most cases. 

MADCAP has a backtracking f ac i l i t y  (not currently 
provided in SETL) as well as a control structure 
called an i terat ive expression. 

As an example of the power of SETL, consider the 
following expression which specifies the prime 
numbers between 2 and lO0: 

{P,2 <= P <= lO0 + (v 2 <: N < P ÷ (P//N)NE. 0)} 

which can be read in English as "the set of P's be- 
tween 2 and IO0 such that for every N greater than 
or equal to 2 and less than P the remainder of P/N 
is not equal to zero". 

The above specification is obviously not an e f f i -  
cient one; a practical program at the very least 
would just consider the odd numbers from 3 to lO0. 

Earley (1973) proposes four data structures which 
are very similar to those used in SETL and MADCAP: 

Tuples (fixed collections of heterogeneous 
objects which can be accessed by 
name) 

Sets (unordered non-repeating collections 
of objects) 

Relations (sets of tuples) 

Sequences (ordered collections of objects) 

Earley's major point is that these structures allow 
a relational level of description in which data 
structures may be described in terms of essential 
relationships between the data items, ignoring the 
particular access paths between them. This pre- 
scription clearly states one of our principles of 
nonprocedural programming. 

Section 6. SUMMARY 

This paper has attempted to describe some of the 
basic characteristics and issues arising from the 
term "nonprocedural languages". I t  has been em- 
phasized repeatedly that this is a relative term 
that changes as the state of the art changes. Num- 
erous other terms are used almost synonymously for 
this concept. Among the major issues discussed 
were the relativeness of the concept from several 
viewpoints, the importance of minimizing unnecessary 
sequencing in writing programs or defining problems, 
the need for a metric to measure levels of nonpro- 
ceduralness, the relation between the language and 
i ts implementation, the relationship to work on 
verifying the objectives of the user, and the con- 
nection with the f ie ld of a r t i f i c i a l  intelligence. 

A brief history of highlights in this f ie ld  was 
given. A discussion of the following 5 features 
which should be included in languages purporting 
to be nonprocedural was given: associative refer- 
encing, aggregate operators, the elimination of 
arbitrary sequencing, nondeterministic programming 
and parallelism, and pattern directed structures. 

A number of specific languages were discussed very 
br ief ly  under the general categories of business 
applications, "nonsequencing", a r t i f i c i a l  i n t e l l i -  
gence, simulation, and set oriented. 

CLA B 
ADD C 
MPY D 
STO T 
CLA E 
MPY F 
ADD T 
STO A 

(a) 
FIGURE 1 

(a*) 

A= (B + C) * D + E*  F 

(b) (b*) 
DO I = l ,  M A÷B + .x C 
D O J = I , N  
C ( I ,  J) : 0 
DOK=I ,  P 
C(I,J) = C(l,J) + A(I,K) * B(K,J) 

(c) 
DO I = 3 TO 95 BY 2 
IF PRIME (1) 

THEN PUT SKIP LIST 
( I ,  SQRT (1)); 
ELSE RETURN; 

END; 

(c*) 
PRINT (2), SQ(PRIME (3,95)) 

or 

CALCULATE THE SQUARE ROOT 
OF THE PRIME NUMBERS 
FROM 3 TO 95 AND 
PRINT IN 2 COLUMNS 
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