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Foreword 
   The present text arises from an extensive revision of our previous book {Advanced 
Methods of Data Exploration and Modelling}. Since so much new material is included, 
particularly in those sections dealing with linear models and latent variable models, we 
thought it appropriate to regard the work as new rather than simply a second edition. 
Consequently we have taken the opportunity to give the book a more appropriate title. 

Preface 
The Fortran 90 standard represents the first significant change in Fortran in over 20 years, 
and brings it into line with most modern structured programming languages.  This book is 
one of a handful on Fortran 90, and one of even fewer in which every program (unless 
otherwise clearly stated) has been tested on a working compiler: the FTN90 compiler for 
PCs.  
If you are a newcomer to Fortran, you should read the book in the conventional way, from 
the beginning. 
However, if you are a Fortran 77 user you may like to dip immediately into later chapters to 
see some of the new features of the language.  Probably the two most important advances 
are the new array facilities (Chapters 9 and 15) and the impressively enlarged collection of 
intrinsic procedures (Appendix C), including the so-called elemental functions which 
operate on all or selected elements of array arguments.  You may now define your own 
types, or structures (Chapter 12) and even construct linked lists with them using pointers 
(Chapter 13).  Modules (Chapter 8) may be independently compiled, and may contain type 
definitions and variable declarations, as well as procedures.  The use of interface blocks 
(Chapter 8)  makes it possible to overload specific procedure names with generic names, 
and also to overload operators.  Conditional loops are possible now with DO WHILE 
(Chapter 6), and there is a new CASE statement (Chapter 6). However, you should 
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probably first have a look at Sections 2.2--2.5 (program layout, variable declarations, etc.) 
and Section 3.5(kind) to see some important changes in the basics of Fortran.  
In keeping with the spirit of  the earlier edition, this book is a problem-solving exposition of 
Fortran 90, and not a technical reference manual.  You will therefore not necessarily find all 
the references to a particular topic in one place in the text (e.g.\ arrays are covered in 
Chapters 9 and 15) as this would interfere with the informal style of the book.  There are, 
however, appendices with summaries of all the statements and the intrinsic procedures, 
and a comprehensive index.  
I should like to thank the following in particular: David Mackin of Edward Arnold for his 
helpful editorial suggestions, and for arranging the loan of an FTN90 compiler; Peter 
Anderton of The Numerical Algorithms Group for the loan of the compiler; the University of 
Cape Town for leave in order to write this book, and for financial support for the project; my 
long-suffering colleagues for leaving me alone while I was writing; and my wife, Cleone, 
who patiently reminds me when programs won't work, that computers are like that, aren't 
they?  
Brian D. Hahn 
Department of Applied Mathematics 
University of Cape Town 
Rondebosch 
South Africa 
June 1993 

Preface to Problem Solving with FORTRAN 77 
So many books on FORTRAN have been written that the appearance of yet another one 
seems to require some justification. There are three particular areas where this book can 
claim to make a distinctive contribution. 
Firstly, the approach taken is a problem-solving one, developed over many years of 
teaching programming to first-year university students with no computing experience.  The 
computer is presented as a tool (probably the most exciting one of the 20th century) for 
solving interesting, real world problems, and examples from many areas, particularly 
science and engineering, are discussed.  The technicalities of each new FORTRAN 
construction are therefore generally presented only after motivation by the posing of a 
suitable problem.  Since the objective of this book is to enable you to solve problems using 
a computer, the first 12 chapters are in a sense a preparation for the final three. In these 
later chapters you will be introduced to some modern computer applications such as 
simulation, modelling and numerical methods.  There are also a large number of exercises, 
involving a variety of applications.  Most of these have solutions provided.  Those that do 
not have solutions may be suitable for use as class projects in a teaching situation. 
Secondly, structured problems are developed throughout. The beginner is shielded from 
the devastating effect of the GOTO statement until well into the text. When it is introduced, 
the use of GOTO is encouraged in one well-defined situation only: this feature appears to 
be unique in all the vast literature on FORTRAN. 
Thirdly, emphasis is laid throughout the book on what has come to be called programming 
style, and guidelines for writing clear, readable programs are presented. 
This book has developed out of notes originally written as a supplement to lectures for 
students taking courses in applied mathematics at the University of Cape Town, with no 
prior experience of computing. It can therefore be used as a ``teach yourself" guide by 
anyone who wants to learn FORTRAN 77 (officially known as FORTRAN ANSI X3-9 1978), 
the current international standard, which is the version used here. 
Although this is primarily a text for beginners, the more experienced programmer should be 
able to find plenty of interest, particularly in the applications. He may even learn something! 
The appendices contain summaries of all the FORTRAN 77 intrinsic functions and 
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statements (including those which are not recommended for stylistic reasons), with 
examples of their general usage. 
No specialized mathematical background is needed to follow most of the examples. There 
are occasional forays into first-year university mathematics, but these are self-contained 
and may be glossed over without loss of continuity (you may even find them instructive!). 
Thanks are due to John Newmarch of the University of Cape Town Information Technology 
Services for his critical reading of the original manuscript on which this book is based, and 
for his invaluable suggestions regarding programming style.  Thanks are also due to the 
generations of students who have patiently endured my efforts to  improve my methods of 
teaching computing. I also wish to thank my colleague, Ruth Smart, who collaborated with 
me on an earlier version of this book, for her helpful advice and painstaking reading of the 
manuscript.  Finally, I should like to acknowledge a deep debt of gratitude to my wife, 
Cleone, for her continual support and encouragement during the preparation of this book. 
It is hoped this book will give some insight into the ways that computers may be used to 
solve real problems, and that after working through it you will be better able to find out 
more about this fascinating subject for yourself. 

Epilogue Programming Style 
Throughout this book the emphasis has been on writing clear, coherent programs to solve interesting 
problems. A program which is written any old how, although it may do what is required, is going to 
be difficult to understand when you go through it again after a month or two. Serious programmers 
therefore pay a fair amount of attention to what is called programming style, in order to make their 
programs clearer and more readable both to themselves, and to other potential users. You may find 
this irritating, if you are starting to program for the first time, because you will naturally be 
impatient to get on with the job. But a little extra attention to your program layout will pay 
enormous dividends in the long run, especially when it comes to debugging.  
Some hints on how to improve your programming style are given below. 
• You should make liberal use of comments, both at the beginning of a program unit or 

subprogram, to describe briefly what it does and any special methods that may have been used, 
and also throughout the coding to introduce different logical sections. Any restrictions on the 
size and type of data that may be used as input should be stated clearly in the comments (e.g. 
maximum sizes of arrays).  

• The meaning of each variable should be described briefly in a comment at its declaration. You 
should declare variables systematically, e.g. in alphabetical order by type.  

• Subprograms should be arranged in alphabetical order with at least one blank line between 
them. 

• Blank lines should be freely used to separate sections of coding (e.g. before and after loop 
structures).  

• Coding inside structures (loops, decisions, etc) should be indented a few columns to make them 
stand out. 

• Blanks should be used in statements to make them more readable, e.g. on either side of 
operators and equal signs; after commas 

• However, blanks may be omitted in places in complicated expressions, where this may make the 
structure clearer. 

• FORMAT statements should be grouped together. 
• The GOTO statement should never be used, under any circumstances. 
• You should try to avoid breaking out of structures in the middle, e.g. with CYCLE or EXIT. 
• Statements which generate an obsolescence warning should be avoided—they could well 

disappear during revision for the next standard. 
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Chapter 1 Getting Going 
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Chapter 1 Summary 
Chapter 1 Exercises 

 
1.1. Introduction 
In the period since I first became an undergraduate student, some 25 years ago, I have 
been fortunate enough to witness the remarkable revolution in computer technology which 
future historians will surely regard as one of the outstanding features of the twentieth 
century. The first computer I programmed occupied a large room. Only one person could 
use it at a time, by pressing an impressive array of switches, and programs had to be 
punched on cards. Its "fast" memory could store about 240 numbers. Its slow memory 
could hold a few thousand numbers, and was located on a rotating drum which you could 
hear ticking as it spun.  
As technology advanced, and computers became more powerful, they also became much 
smaller. From occupying a whole room, they now only require part of a desk, a lap, or even 
a palm. They have banded together to form networks, and during an average working day, 
it is not uncommon to send electronic mail messages around the world, and to connect 
directly to a computer on the other side of the world.  
You may not have used a computer before (except possibly to play games) but you are 
probably familiar with using a calculator. The simplest sort can only do arithmetic and 
display an answer. Smarter ones have memory locations—where intermediate results may 
be stored—and function keys such as sin, log, etc. The most sophisticated calculators 
allow you to store the sequence of operations (instructions) needed to calculate the 
solution of the problem. This sequence of instructions is called a program. To carry out the 
entire set of calculations you only need to load the program into the calculator, press the 
run key, supply the necessary data, and sit back while the calculator churns out the 
answer. A computer, whether it is a small personal one like the IBM PC, or a large 
impersonal mainframe, is in principle only an advanced programmable calculator, capable 
of storing and executing sets of instructions, called programs, in order to solve specific 
problems. 
You may have used a computer before, but only to run software packages that have been 
written by someone else. Spreadsheets, databases and word processors fall into this 
category. If you have taken the trouble to start reading this book, you probably have an 
interest in science or engineering, and are curious enough about programming to want to 
write your own programs to solve your particular problems, instead of relying on someone 
else's more general package.  

1.2. Fortran 
The particular set of rules for coding the instructions to a computer is called a programming 
language. There are many such languages, for example Fortran, BASIC, Pascal and C++. Fortran, 
which stands for FORmula TRANslation, was the first "high level" programming language. It made 
it possible to use symbolic names to represent mathematical quantities, and to write mathematical 
formulae in a reasonably comprehensible form, such as X = B/(2*A). The idea of Fortran was 
proposed in late 1953 by John Backus, in New York, and the first Fortran program was run in April 
1957.  
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The use of Fortran spread so rapidly that it soon became necessary to standardize it, so that a 
program written in the standard would be guaranteed to run at any installation which claimed to 
support the standard. In 1966 the first ever standard for a programming language was published. 
This version became known as Fortran 66 (more correctly FORTRAN 66, but the practice of 
capitalizing acronyms is becoming unfashionable). A new standard, Fortran 77, was published in 
1978. In spite of competition from newer languages such as Pascal and C, Fortran continued to 
flourish, so much so that the latest standard, Fortran 90, came out in August 1991. This is the 
version used in this book. Connoisseurs of Fortran will be interested in the history of the language 
sketched by Michael Metcalf and John ReidMetcalf and Reid in Fortran 90 Explained, Oxford 
University Press (Oxford, 1990). 
If you are already experienced in Fortran, you might like to consult the Preface, which indicates 
where the new features may be found. You will also need to know that some old features have been 
declared obsolescent. These (which may include some of your old favourites) have been made 
redundant by the new standard, and are recommended for deletion in the next standard, i.e. the 
recommendation is not binding.  Appendix B contains a summary of all Fortran 90 statements, and 
indicates which are obsolete and/or not recommended. 

1.3. Running Fortran Programs 
If you are new to Fortran, you should run the sample programs in this section as soon as 
possible, without trying to understand in detail how they work. Explanations will follow in 
due course. You will need to find out, from a manual or from someone else, how to enter 
and run Fortran programs on your computer system. 

Greetings 
This program will greet you if you give it your name: 

   
! My first Fortran 90 program! 
! Greetings! 
 
CHARACTER NAME*20 
 
PRINT*, 'What is your name?' 
READ*, NAME 
PRINT*, 'Hi there, ', NAME 
END 
 

   
You should get the following output (your response is in italics): 
What is your name? 
Garfield 
Hi there, Garfield 

AIDS cases 
The following program computes the number of accumulated AIDS cases A(t) in the United States 
in year t according to the formula 

A t t( ) . ( . )= −174 6 19812 3
 

   
PROGRAM AIDS 
! Calculates number of accumulated AIDS cases in USA 
 INTEGER T          ! year            
 REAL  A          ! number of cases       
                               
 READ*, T                          
 A = 174.6 * (T - 1981.2) ** 3               
 PRINT*, 'Accumulated AIDS cases in US by year', T, ':', A 
END PROGRAM AIDS 
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If you supply the value 2000 for the year you should get the output 
   
Accumulated AIDS cases in US by year 2000 :  1.1601688E+06 

   
The answer is given in scientific notation. E+06 means multiply the preceding number by 106

, so 
the number of cases is about 1.16 million. Using trial and error run the program repeatedly to find 
out when there will be about 10 million accumulated cases.  
Try typing a mistake in the value of t (2,000 for example) to see how Fortran responds. 

Compound interest 
Suppose you have $1000 saved in the bank, which compounds interest at the rate of 9% per year. 
What will your bank balance be after one year? You must obviously be able to do the problem in 
principle yourself, if you want to program the computer to do it. The logical breakdown, or structure 
plan, of the problem is as follows: 
 1. Get the data (initial balance and interest rate) into the computer 
 2. Calculate the interest (9% of $1000, i.e. $90) 
 3. Add the interest to the balance ($90 + $1000, i.e. $1090) 
 4. Print (display) the new balance. 

   
This is how the program looks: 

   
PROGRAM MONEY 
! Calculates balance after interest compounded 
 REAL BALANCE, INTEREST, RATE   
                  
 BALANCE = 1000          
 RATE = 0.09           
 INTEREST = RATE * BALANCE    
 BALANCE = BALANCE + INTEREST   
 PRINT*, 'New balance:', BALANCE 
END PROGRAM MONEY 

   
Run the program and note that no input (from the keyboard) is required now (why not?). The output 
should be 1.0900000E+03 (1090). 

Summary 
• A computer program is a set of coded instructions for solving a particular problem. 
• The Fortran statement READ* is for getting data into the computer. 
• The Fortran statement PRINT* is for printing (displaying) results. 

Chapter 1 Exercises 
1.1   Write a program to compute and print the sum, difference, product and quotient of two numbers 
A and B (supplied from the keyboard). The symbols for subtraction and division are - and / 
respectively. Use the program to discover how Fortran reacts to an attempted division by zero. 

1.2   The energy stored on a condenser is, CV 2 2/ where C is the capacitance and V is the potential 
difference. Write a program to compute the energy for some sample values of C and V. 
Solutions to most exercises are in Appendix E. 
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Chapter 2 Introduction 
   
In this chapter and the next one we will look in detail at how to write Fortran programs to solve 
simple problems. There are two essential requirements for successfully mastering this art:  
• The exact rules for coding instructions must be learnt; 
• A logical plan for solving the problem must be developed. 

   
These two chapters are devoted mainly to the first requirement: learning some basic coding rules. 
Once you have mastered these, we can go on to more substantial problems.  
All Fortran 90 statements introduced in this and subsequent chapters (and some which are not) are 
summarized in Appendix B.  

2.1. Compound Interest Again 
   
In Chapter 1 you ran the program MONEY to compute compound interest: 

   
PROGRAM MONEY 
! Calculates balance after interest compounded 
 REAL BALANCE, INTEREST, RATE 
 
 BALANCE = 1000 
 RATE = 0.09 
 INTEREST = RATE * BALANCE 
 BALANCE = BALANCE + INTEREST 
 PRINT*, 'New balance:', BALANCE 
 
END PROGRAM MONEY 

   
We will now discuss in detail how the program works. When you run a Fortran 90 program two 
separate processes take place. Firstly the program is compiled. This means that each statement is 
translated into some sort of machine code that the computer can understand. Secondly, the compiled 
program is executed. In this step each translated instruction is carried out. The software package that 
carries out both these processes is generally called a compiler. 
During compilation, space in the computer's random access memory (RA M) is allocated for any 
numbers (data) which will be generated by the program. This part of the memory may be thought of 
as a bank of boxes, or memory locations, each of which can hold only one number at a time. These 
memory locations are referred to by symbolic names in the program. So the statement  

   
BALANCE = 1000 

   
allocates the number 1000 to the memory location named BALANCE. Since the contents of 
BALANCE may change during the program it is called a variable. 
The translated (compiled) form of our program looks roughly as follows: 
 1. Put the number 1000 into memory location BALANCE 
 2. Put the number 0.09 into memory location RATE 
 3. Multiply the contents of RATE by the contents of BALANCE and put the answer in INTEREST 
 4. Add the contents of BALANCE to the contents of INTEREST and put the answer in BALANCE 
 5. Print (display) a message followed by the contents of BALANCE  
 6. Stop. 

   
During execution, these translated statements are carried out in order from the top down. After 
execution, the memory locations used will have the following values: 

   
BALANCE : 1090 
INTEREST : 90 
RATE   : 0.09 
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Note that the original contents of BALANCE is lost. 
The PROGRAM statement in the first line introduces the program. It is optional, and may be 
followed by an optional name. The second line, starting with an exclamation mark, is a comment for 
the benefit of the reader, and has no effect on the compilation. Variables in a program can be of 
different type; the REAL statement declares their type in this example. The first three non-blank lines 
of this program are non-executable, i.e. no action is carried out by them (they have no counterpart in 
the translated form of the program above). 
Try the following exercises: 
 1. Run the program. 
 2. Change the first executable statement to read 

BALANCE = 2000 
and make sure that you understand what happens when you run the program again. 

 3. Leave out the line 
BALANCE = BALANCE + INTEREST 
and re-run. Can you explain what happens? 

 4. Try to rewrite the program so that the original contents of BALANCE is not lost. 
   
A number of questions have probably occurred to you by now, such as 
• What names may be used for memory locations? 
• How can numbers be represented? 
• What happens if a statement won't fit on one line? 
• How can we organize the output more neatly? 

   
These questions, and hopefully many more, will be answered in the following sections. 

2.2. Program Layout 
The general structure of a simple Fortran program is as follows (items in square brackets are 
optional): 

   
[PROGRAM program name] 
     [declaration statements] 
     [executable statements] 
END [PROGRAM [program name]] 

   
As you can see, the only compulsory statement in a Fortran program is END. This statement informs 
the compiler that there are no further Fortran statements to compile.  
The notation 

   
END [PROGRAM [program name]]  

   
means that the program name may be omitted from the END statement, but that if there is a program 
name, the keyword PROGRAM may not be omitted. 

Statements 
Statements form the basis of any Fortran program, and may contain from 0 to 132 characters (a 
statement may be blank; blank statements are encouraged to make a program more readable by 
separating logical sections). Earlier versions of Fortran insisted that certain parts of a statement start 
in certain columns; Fortran 90 has no such restriction.  
All statements, except the assignment statement (e.g. BALANCE = 1000), start with a keyword. 
Some keywords encountered so far are END, PRINT, PROGRAM, and REAL.  
Generally, there will be one statement per line. However, multiple statements may appear on a line if 
they are separated by semi-colons. For the sake of clarity, this is recommended only with very short 
assignments, such as  

   
A = 1; B = 1; C = 1 
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Long statements may continue over several lines as discussed below. 

Significance of blanks 
   
Blanks are generally not significant, i.e. you can use them to improve readability by indenting 
statements (adding blanks on the left) or padding within statements. However, there are places 
where blanks are not allowed. To be specific it is necessary to define a technical term: the token.  
A token in Fortran 90 is a basic significant sequence of characters, e.g. labels, keywords, names, 
constants, operators and separators (these items are all discussed later). Blanks may not appear 
within a token. So INTE GER, BAL ANCE and < = are not allowed (<= is an operator), while A * 
B is allowed and is the same as A*B.  
A name, constant or label must, however, be separated from an adjacent keyword, name, constant or 
label by at least one blank. So REALX and 30CONTINUE are not allowed (30 is the label in the 
second case).  

Comments 
   
Any characters following an exclamation mark (!) (except in a character string) are commentary, 
and are ignored by the compiler. An entire line may be a comment. A blank line is also interpreted 
as comment. Comments should be used liberally to improve readability. 

Continuation lines 
   
If a statement is too long to fit on a line, it will be continued on the next line if the last non-blank 
character in it is an ampersand (&): 

   
A = 174.6 *             & 
    (T - 1981.2) ** 3 

   
Continuation is normally to the first character in the next non-comment line. However, if the first 
non-blank character of the continuation line is &, continuation is to the first character after the &. In 
this way a token may be split over two lines, although this is not recommended, since it makes the 
code less easy to read. 
An & at the end of a comment line will not continue the comment, since the & is construed as part 
of the comment. 

2.3. Data Types 
The concept of a data type is fundamental in Fortran 90. A data type consists of a set of 
data values (e.g. the whole numbers), a means of denoting those values (e.g. -2, 0, 999), 
and a set of operations (e.g. arithmetic) that are allowed on them.  
The Fortran 90 standard requires five intrinsic (i.e. built-in) data types, which are divided 
into two classes. The numeric types are integer, real and complex. The non-numeric types 
are character and logical. 
Associated with each data type are various kinds. This is a basically the number of bits 
available for storage, so that, for example, there might be two kinds of integer: short and 
long. There is a full discussion of kind in Chapter 3.  
In addition to the intrinsic data types, you may define your own derived data types, each 
with their own set of values and operations. This is discussed in Chapter 12. 
Integer and real intrinsic types are discussed below. Character and complex intrinsic types 
are discussed in Chapter 3; the remaining intrinsic type, logical, is dealt with in Chapter 5. 

2.4. Literal Constants 
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Literal constants (often simply called constants) are the tokens used to denote the values 
of a particular type, i.e. the actual characters that may be used. Before we consider 
constants in detail we need to look briefly at how information is represented in a computer. 

Bits 'n bytes 
The basic unit of information in a computer is a bit: something which has only two possible 
states, usually described as on and off. The binary digits 0 and 1 can therefore be used to 
represent these two states mathematically (hence the term digital computer). The word "bit" 
in a contraction of "binary digit". 
Numbers in a computer's memory must therefore be represented in binary code, where 
each bit in a sequence stands for a successively higher power of 2. The decimal numbers 0 
to 15, for example, are coded in binary as follows: 

 
A byte is the amount of computer memory required for one character, and is eight bits long. 
Since each bit in a byte can be in two possible states, this gives 2 8, i.e. 256, different 
combinations. 
Hexadecimal code (see table) is often used because it is more economical than binary. 
Each hexadecimal digit stands for a power of 16. E.g. 

( )f x x x= + −3 3  
One byte can be represented by two hex digits. 
Microcomputer memory size (and disk capacity) is measured in bytes, so 64K for example 
means slightly more than 64,000 bytes (since 1K actually means 1024). Microcomputers 
are sometimes referred to as 8-, 16- or 32-bit machines. This describes the length of the 
units of information handled by their microprocessors (chips). The longer these units, the 
faster the computer. 

Integer literal constants 
   

Integer literal constants are used to denote the values of the integer intrinsic type. The simplest and 
most obvious representation is an unsigned or signed integer (whole number), e.g.  

   
1000  0  +753  -999999  2501 

   
In the case of a positive integer constant, the sign is optional. 
The range of the integers is not specified in the standard, but on a 16-bit computer, for example, 

could be from -32768 to +32767 (i.e. ( )′ = +f x x3 12
 to 10 6−

). 
The range may be specified on a particular computer by using a kind parameter. This is discussed in 
Chapter 3.  
Positive whole numbers may also be represented in binary, octal (base 8) or hexadecimal form, e.g.  

   
binary:     B'1011' 
octal:      O'0767' 
hexadecimal:   Z'12EF' 
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Lower case may be used. Quotation marks (") may be used instead of apostrophes (') as delimiters. 
These forms are restricted to use with the DATA statement, and in internal and external files as digit 
strings, without the leading letters and the delimiters.  

Real literal constants 
   
These are used to denote values of real intrinsic type, and take two forms. 
The first form is the obvious one and is called positional form or fixed point and consists of a string 
of digits with a decimal point. It may be signed or unsigned. Examples:  

   
0.09  37.  37.0  .0  -.6829135 

   
There may be no digits to the left of the decimal point, or no digits to the right of the decimal point, 
but a decimal point by itself is not allowed. 
The second form is called exponential form or floating point  It basically consists of either an integer 
(signed or unsigned) or a fixed point real (signed or unsigned) followed in both cases by the letter E 
followed by an integer (signed or unsigned). The number following the E is the exponent and 
indicates the power of 10 by which the number preceding the E must be multiplied. E.g.  

   
2.0E2      (= 200.0) 
2E2       (= 200.0) 
4.12E+2     (= 412.0) 
-7.321E-4    (= -0.0007321) 

   
Real constants are stored in exponential form in memory, no matter how they are actually written. If 
a real has a fractional part it may therefore be represented approximately (this is sometimes referred 
to as finite machine precision). Even if there is no fractional part the real is stored differently from 
an integer of the same value. E.g. 43 is an integer, while 43.0 is a real. They will be represented 
differently in memory.  
The range and precision of real constants are not specified by the standard. Typically, reals will 

range between ( )n n n! * != −1
 and 

( ) ( )f x h f x
h

+ −

, with a precision of about seven decimal 
digits. The range and precision may be specified with a kind parameter.  

2.5. Names and Variables 
We have already seen that memory locations can be given symbolic names, such as BALANCE and 
RATE. In Fortran 90, names can be given to other things apart from memory locations, such as the 
program itself. A name must consist of between 1 and 31 alphanumeric characters, and must start 
with a letter. The alphanumeric characters are the 26 letters, the 10 digits, and the underscore (_). 
(Fortran 77 users will note that names may now be longer than six characters.) 
Except in the case of character strings, Fortran 90 is case insensitive, i.e. the names MYNAME and 
MyName represent the same thing. Perhaps it should be noted that Fortran programmers have a long 
tradition of writing programs in uppercase only. This goes back to the days (which I remember 
well!) when card punch machines had to be used—these can represent only uppercase letters. A 
mixture of upper- and lowercase is, however, much easier to read (it contains more information than 
pure uppercase). So it might be better to use NoOfStudents than NOOFSTUDENTS. It is also 
generally better to use meaningful names (which are not too long however), such as 
NoOfStudents, instead of simply N.  
There are no reserved words in Fortran; you may therefore use the name END for a memory 
location, although this is certainly not recommended!  
The following table shows some valid and invalid names. 

   
Valid names Invalid names (why?)   
X X+Y  
R2D2 SHADOW FAX 
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Pay_Day 2A  
ENDOFTHEMONTH OBI-WAN  
A variable is a memory location whose value may be changed during execution of a program. A 
variable's name is constructed according to the above rules. A variable has a type which determines 
the type of constant it may hold.  It is given a type in a type declaration, e.g. 

   
INTEGER X 
REAL INTEREST 
CHARACTER LETTER 
REAL :: A = 1 

   
Note that a variable may be initialized in its declaration. In this case a double colon (::) must be 
used. The value of a variable initialized in this way may be changed later in the program. Although 
more complicated expressions are allowed when initializing, it is recommended for stylistic reasons 
that initialization be restricted to simple assignments as shown above. 
Although the variables X, INTEREST and LETTER have been declared in the program fragment 
above, they are as yet undefined, as they have no value. You should avoid referencing an undefined 
variable. A variable may be defined in a number of ways, e.g. by initializing it (A above) or 
assigning a value to it, as in other examples we have seen.  
A variable may also be given an initial value in a DATA statement, after being declared, e.g. 

   
REAL A, B 
INTEGER I, J 
DATA A, B / 1, 2 / I, J / 0, -1/ 

   
A name in a program must be unique. For example, if a program is named MONEY, an attempt to 
declare a variable of the same name will cause an error. 
The variables described here are scalar because they can hold only a single value. 

Implicit type rule 
   
Earlier versions of Fortran had what was called an implicit type rule. Variables starting with the 
letters I to N inclusive were automatically specified with integer type, while variables starting with 
any other letter were automatically specified real. This (unhelpful) rule still applies in Fortran 90 
by default, to ensure compatibility of code written under earlier versions.  
The implicit type rule can lead to serious programming errors. A real value might unwittingly be 
assigned to a variable which is integer by default; the fractional part is then truncated (chopped off). 
For example, the statement  

   
Interest_rate = 0.12 

   
in a program where Interest_rate is not declared explicitly will assign the value 0 to the variable. 
To guard against such errors it is strongly recommended that the statement 

   
IMPLICIT NONE  

   
be used at the start of all programs. This statement switches off the implicit type rule; consequently 
all variables used in the program must be declared. This incidentally promotes good programming 
style; having to declare a variable means that you have been forced to think about what it represents. 

2.6. Vertical Motion under Gravity 
   
If a stone is thrown vertically upward with an initial speed u, its vertical displacement s after a time t 

has elapsed is given by the formula ( )f x x= 3
,where g is the acceleration due to gravity. Air 

resistance has been ignored. We would like to compute the value of s, given u and t. Note that we 
are not concerned here with how to derive the formula, but how to compute its value. The logical 
preparation of this program is as follows:  
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 1. Get values of g, u and t into the computer 
 2. Compute the value of s according to the formula 
 3. Print the value of s 
 4. Stop 

   
This plan may seem trivial to you, and a waste of time writing down. Yet you would be surprised 
how many beginners, preferring to rush straight to the computer, try to program step 2 before step 1. 
It is well worth developing the mental discipline of planning your program first—if pen and paper 
turns you off why not use your word processor? You can ever enter the plan as comment lines in the 
program.  
The program is as follows: 

   
PROGRAM Vertical 
! Vertical motion under gravity 
 
IMPLICIT NONE 
 
REAL, PARAMETER :: G = 9.8 ! acceleration due to gravity 
REAL S           ! displacement (metres) 
REAL T           ! time 
REAL U           ! initial speed (metres/sec)   
 
PRINT*, ' Time    Displacement' 
PRINT* 
U = 60 
T = 6 
S = U * T - G / 2 * T ** 2 
PRINT*, T, S 
 
END PROGRAM Vertical 

   
The strange way of declaring G makes it a named constant , since its value should definitely not 
change in the program. Named constants are discussed further below. 
Table 2.1 Numeric intrinsic operators  

   
Operator Precedence Meaning Example  
** 1 Exponentiation 2 ** 4 (=24) 
* 2 Multiplication 2 * A 
/ 3 Division B / DELTA 
    
+ 3 Addition or unary plus A + 6.9 
–– – –  

 

2.7. Programming Style 
   
Programs that are written any old how, while they may do what is required, can be difficult to follow 
when read a few months later, in order to correct or update them (and programs that are worth 
writing will need to be maintained in this way). It is therefore extremely important to develop the art 
of writing programs which are well laid out, with all the logic clearly described. This is known as 
programming style, and should be manifest in most of the programs in this book (occasional lapses 
are in order to save space ...). Guidelines for good style are laid out in the Epilogue.  
The program in the previous section has been written with this in mind: 
• There is a comment at the beginning describing what the program does. 
• All the variables have been declared and described on separate lines, in alphabetical order. You 

may like to include initialization with the declaration and description, e.g. 
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REAL :: T = 6          ! time 
 

   
• Blanks have been used on either side of the equal signs and the operators (e.g. **), and after 

commas.  
• Blank lines have been used to separate distinct parts of the program. 

   
You may like to develop your own style; the point is that you must pay attention to readability. 

2.8. Numeric Expressions 
   
The program Vertical in Section 2.6 makes use of the following code: 

   
U * T - G / 2 * T ** 2 

   
This is an example of a numeric expression—a formula combining constants, variables (and 
functions like square root) using numeric intrinsic operators. It specifies a rule for computing a 
value. Since it only computes a single value it is a scalar numeric expression. There are five numeric 
intrinsic operators, shown in Table 2.1. Typing blanks on either side of operators will make 
expressions more readable. 
These operators are called intrinsic because they are built-in. We will see later how to define new 
operators, and how to overload an intrinsic operator, i.e. give it a different meaning.  
An operator with two operands, as in A + B, is called a binary or dyadic operator. When an 
operator appears with only one operand, as in -Z, it is called unary or monadic. 
The order in which operations in an expression are carried out is determined by the precedence of 
the operators, according to the table above, except that parentheses () always have the highest 
precedence. Since multiplication has a higher precedence than addition, this means, for example, 
that 1 + 2 * 3 is evaluated as 7, while (1 + 2) * 3 is evaluated as 9. Note also that -3 ** 
2 evaluates to –9, not 9. 
When operators with the same precedence occur in the same expression, they are with one exception 
always evaluated from left to right, so 1 / 2 * A is evaluated as (1 / 2) * A and not 1 / 
(2 * A). 
The exception to the precedence rules is that in an expression of the form  

   
A ** B ** C  

   
the right-hand operation B ** C is evaluated first. 

 
Integer division 

   
This causes so much heartache amongst unsuspecting beginners that it deserves a section of its own. 
When an integer quantity (constant, variable or expression) is divided by another integer quantity the 
result is also of integer type, so it is truncated towards zero, i.e. the fractional part is lost. E.g. 

   
10 / 3      evaluates to 3 
 19 / 4     evaluates to 4 
 4 / 5      evaluates to 0 (which could cause an unwanted division 
by zero) 
 - 8 / 3    evaluates to -2 
3 * 10 / 3  evaluates to 10 
10 / 3 * 3  evaluates to 9  

Mixed-mode expressions 
Fortran 90 allows operands in an expression to be of different type. The general rule is that the 
weaker or simpler type is converted, or coerced, into the stronger type. Since integer type is the 
simplest, this means that operations involving real and integer operands will be done in real 
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arithmetic. This applies to each operation separately, not necessarily to the expression as a whole. 
So, for example,  

   
10 / 3.0    evaluates to 3.33333 
4. / 5      evaluates to 0.8 
2 ** (- 2)  evaluates to 0 (?) 

   
However, note that  

   
 3 / 2 / 3.0 

   
evaluates to 0.333333 because 3 / 2 is evaluated first, giving integer 1. 

2.9. Numeric Assignment 
   
The purpose of the numeric assignment is to compute the value of a numeric expression and assign it 
to a variable. Its general form is 
variable = expr 

   
The equal sign does not have the same meaning as the equal sign in mathematics, and should be read 
as "becomes". So the assignment 

   
X = A + B 

   
should be read as "(the contents of) X becomes (the contents of) A plus (the contents of) B". 
In this way the assignment 

   
N = N + 1 

   
is meaningful, and means "increase the value of N by 1", whereas the mathematical equation  

   
n = n+1 

   
is not generally meaningful. 
If expr is not of the same type as var, it is converted to that type before assignment. This means that 
there might be loss of precision. For example, assuming N is integer, and X and Y are real: 

   
N = 10. / 3  (value of N is 3) 
X = 10 / 3   (value of X is 3.0) 
Y = 10 / 3.  (value of Y is 3.33333) 

   
The danger of performing integer divisions inadvertently cannot be stressed too much. For example, 
you might want to average two marks which happen to be integers M1 and M2. The most natural 
statement to write is 

   
FINAL = (M1 + M2) / 2 

   
but this loses the decimal part of the average. It is always safest to write constants as reals if real 
arithmetic is what you want: 

   
FINAL = (M1 + M2) / 2.0 

Examples 
The formulae 

10 1−  
may be translated into the following Fortran assignments: 

   
F = G * M * E / R ** 2 
C = (A ** 2 + B ** 2) ** 0.5 / (2 * A) 



 18 

A = P * (1 + R / 100) ** N 
   
The second can also be written with the SQRT intrinsic function as 

   
C = SQRT ( A ** 2 + B ** 2 ) / (2 * A) 

   
but never as 

   
C = (A ** 2 + B ** 2) ** (1/2) / (2 * A) 

   
(1/2 in the exponent evaluates to zero because of integer division).  

2.10. Simple Input and Output 
In this section we will look at the READ* and PRINT* statements more closely. The process of 
getting information into and out of the computer is an aspect of what is called data transfer. The 
simplest form of data transfer in Fortran 90 is with READ* and PRINT* and is called list-directed. 
More advanced forms of data transfer are discussed in Chapter 10. 

Input 
   
So far in this chapter variables have been given values by using numeric assignment statements, as 
in the program MONEY: 

   
BALANCE = 1000 
RATE = 0.09 

   
This is an inflexible way of supplying data, since to run the program for different balances or 
interest rates you would have to find and change these statements. There may be many such 
assignments in a more complicated program, and it is a waste of time to recompile them every time 
you want to change the data. The READ* statement, however, which we saw in Chapter 1, allows 
you to supply the data while the program is running. Replace these two assignment statements with 
the single statement  

   
READ*, BALANCE, RATE 

   
When you run the program, the compiler will wait for you to type the values of the two variables at 
the keyboard, if you are using a PC (an IBM compatible personal computer). They may be on the 
same line, separated by blanks, a comma, or a slash, or on different lines. You can correct a number 
with the backspace key while entering it. If you are using some other system, you may need some 
advice on how to supply data for READ*.  
The general form of the READ* statement is 

   
READ*, list  

   
where list is a list of variables separated by commas. 
Note the following general rules: 
• A single line of input or output is called a record (e.g. in the case of a PC, from the keyboard or 

on the screen).  
• Each READ statement requires a new input record. E.g. the statement  

   
READ*, A, B, C 
 

   
 will be satisfied with one record containing three values: 

   
3 4 5 

 whereas the statements 
   

READ*, A 
READ*, B 



 19

READ*, C 
   

 require three input records, each with one value in it: 
   

3 
4 
5 
 

   
• When the compiler encounters a new READ, unread data on the current record is discarded, and 

the compiler looks for a new record to supply the data. 
• Data for a READ may run over onto subsequent records. Basically the compiler searches all 

input records for data until the I/O (Input/Output) list has been satisfied. 
• If there are not enough data to satisfy a READ the program will crash with an error message. 

Example 
   
The statements 

   
READ*, A 
READ*, B, C 
READ*, D 

   
with the input records 

   
1 2 3 
4 
7 8 
9 10 

   
have the same effect as the assignments 

   
A = 1 
B = 4 
C = 7 
D = 9 

   

Reading data from text files 
It often happens that you need to test a program by reading a lot of data. Suppose you were writing a 
program to find the average of, say, 10 numbers. It becomes a great nuisance to have to type in the 
10 numbers each time you run the program (since programs seldom work correctly the first time). 
The following trick is very useful. 
The idea is to put the data in a separate (external) file which is stored on your computer system, e.g. 
on its hard disk if you are using a PC. The program then reads the data from the file each time it is 
run, instead of from the PC keyboard. As an example, use your word processor to store the 
following line in the ASCII (text) file called DATA:  

   
3 4 5 

   
Now use this program to read these three numbers from the file and display them on the screen: 

   
OPEN( 1, FILE = 'DATA' ) 
READ(1, *) A, B, C 
PRINT*, A, B, C 
END 

   
The OPEN statement connects the unit number (1) to the external file DATA. The form of the READ 
statement shown here then directs the compiler to look in the file connected to unit 1 for its data (the 
unit number may typically be from 1 to 99).  

Output 
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The PRINT* statement is very useful for output of small amounts of data, usually while you are 
developing a program, since you don't need to be concerned with the exact details of the form of the 
output. 
The general form is 
PRINT*, list 

   
where list may be a list of constants, variables, expressions, and character strings, separated by 
commas. A character string is a sequence of characters delimited by quotes (") or apostrophes ('). 
E.g. 

   
PRINT*, "The square root of", 2, 'is', SQRT( 2.0 ) 

   
Here are some general rules: 
• Each PRINT* statement generates a new output record. 
• The way reals are printed depends on your particular system. The FTN90 compiler on a 386, for 

example, displays reals between –99.999 and +99.999 in fixed point form, and all others in 
exponential form. If you want to be fussy, you have to use format specifications (Chapter 10). 
E.g. the following statements will print the number 123.4567 in fixed point form over 8 
columns correct to two decimal places: 

   
   X = 123.4567 
   PRINT 10, X 
10 FORMAT( F8.2 ) 
 

   
• If a character string in PRINT* is too long to fit on one line it will be displayed without a break 

if & also appears in the continuation line: 
   

PRINT*, 'Now is the time for all go& 
&od men to come to the aid of the party' 

Sending output to the printer 
   
This may be done as follows (on a PC): 

   
OPEN( 2, FILE = 'prn' ) 
WRITE(2, *) 'This is on the printer' 
PRINT*, 'This is on the screen' 

   
Note that WRITE must be used in conjunction with a unit number. This is a more general statement 
than PRINT. 

Summary 
   
• Successful problem solving with a computer requires knowledge of the coding rules and a 

sound logical plan. 
• The compiler translates the program statements into machine code. 
• Fortran statements may be up to 132 characters long and may start anywhere on the line. 
• All statements, except assignments, start with a keyword. 
• A Fortran token is a sequence of characters forming a label, keyword, name, constant, operator 

or separator. 
• Blanks should be used to improve readability, except inside keywords and names. 
• Comments may be typed after the exclamation! They should be used liberally to describe 

variables and to explain how a program works. 
• A statement with & as its last non-blank character will be continued onto the next line.  
• There are five intrinsic data types: integer, real, complex, logical and character. 
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• Values of each data type are represented by literal constants. 
• Integer constants may also be represented in binary, octal and hexadecimal. 
• Real constants are represented in fixed point or floating point (exponential) form. 
• Alphanumeric characters are the letters, digits and the underscore. 
• Names may contain up to 31 alphanumeric characters, starting with a letter. 
• A variable is the symbolic name of a memory location. 
• The IMPLICIT NONE statement should be used to avoid variables being given a type 

implicitly. 
• A numeric variable should be declared integer or real in a type declaration statement. 
• Numeric expressions may be formed from constants and variables with the five numeric 

intrinsic operators, which operate according to strict rules of precedence. 
• Decimal parts are truncated when integers are divided, or when integers are assigned to reals. 
• Numeric assignment computes the value of a numeric expression and assigns it to a real or 

integer variable. 
• Groups of variables may be given initial values in a DATA statement. 
• PRINT* is used to print (display) output. 
• READ* is used to input data from the keyboard while a program is running. 
• Data may also be read from an external file (e.g. a disk file). 

   

Chapter 2 Exercises 
   

2.1   Evaluate the following numeric expressions, given that A = 2, B = 3, C = 5 (reals); and I 
= 2, J = 3 (integers). Answers are given in parentheses. 

 
A * B + C        (11.0) 
A * (B + C)      (16.0) 
B / C * A        (1.2) 
B / (C * A)      (0.3) 
A / I / J        (0.333333) 
I / J / A        (0.0) 
A * B ** I / A ** J * 2   (4.5) 
C + (B / A) ** 3 / B * 2.  (7.25) 
A ** B ** I       (512.0) 
- B ** A ** C       (-45.0) 
J / (I / J)       (division by zero) 

2.2   Decide which of the following constants are not written in standard Fortran, and state why not: 
 

(a) 9,87 (b) .0 (c) 25.82 (d)–356231 
(e) 3.57*E2 (f) 3.57E2.1 (g) 3.57E+2 (h)  3,57E–2 

2.3   State, giving reasons, which of the following are not Fortran variable names: 
 

(a) A2 (b) A.2 (c) 2A (d) 'A'ONE 
 

(e) AONE (f) X_1 (g) MiXedUp (h) Pay Day 
 

(i) U.S.S.R. (j) Pay_Day (k) min*2 (l) PRINT 
2.4   Find the values of the following expressions by writing short programs to evaluate them 
(answers in parentheses):  

10 2−  
the sum of 5 and 3 divided by their product (0.53333) 
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the cube root of the product of 2.3 and 4.5 (2.17928) 
the square of 2π (39.4784—take π = 3.1415927 

e x x xx = + + + +1
2 3

2 3

! !
"

 
10 6−

  (2107.18—the balance when $1000 is deposited for 5 years at 15% p.a. compounded 
monthly) 
2.5   Translate the following expressions into Fortran: 
 

(a) ax bx c2 0+ + =  (b) ≠  (c) ≠  (d) 0 ≤ ≤X x  

(e) ( )Φ x  (f) 
( ) ( )Φ x r at bt ct= − + +0 5 2 3.

 (g) 
( )r x= −exp .0 5 22 π

 (h) 

( )t x= +1 1 0 3326.  
2.6   Suppose that the largest integer on your system is ≤. Write a Fortran statement which will 
compute this number, bearing in mind that an attempt to compute ≤ will cause an overflow error. 
2.7   Write a program to calculate x, where 
F0  
and a = 2, b = -10, c = 12 (use Read* to input the data). (Answer 3.0)  
2.8   There are eight pints in a gallon, and 1.76 pints in a litre. The volume of a tank is given as 2 
gallons and 4 pints. Write a program which reads this volume in gallons and pints and converts it to 
litres. (Answer: 11.36 litres)  
2.9   Write a program to calculate petrol (gas) consumption. It should assign the distance travelled 
(in kilometres) and the amount of petrol used (in litres) and compute the consumption in km/litre as 
well as in the more usual form of litres per 100 km. Write some helpful headings, so that your output 
looks something(?) like this: 

   
Distance Litres used Km/L L/100Km  
528 46.23 11.42 8.76 

2.10   Write some lines of Fortran which will exchange the contents of two variables A and B, using 
only one additional variable T.  
2.11   Try the previous problem without using any additional variables!  
2.12   Try to spot the syntax errors (i.e. mistakes in coding rules) in this program before running it 
on the computer to check your answers with the error messages generated by your compiler:  

   
PROGRAM Dread-ful 
REAL: A, B, X 
X:= 5 
Y = 6,67 
B = X \ Y 
PRINT* 'The answer is", B 
END. 

   
2.13   A mortgage bond (loan) of amount L is obtained to buy a house. The interest rate r is 15% 
(0.15) p.a. The fixed monthly payment P which will pay off the bond exactly over N years is given 
by the formula  
F20  
Write a program to compute and print P if N=20 years, and the bond is for $50,000. You should get 
$658.39. 
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It's interesting to see how the payment P changes with the period N over which you pay the loan. 
Run the program for different values of N (use READ*). See if you can find a value of N for which 
the payment is less than $625.  
Now go back to having N fixed at 20 years, and examine the effect of different interest rates. You 
should see that raising the interest rate by 1% (0.01) increases the monthly payment by about $37. 
2.14   It's useful to be able to work out how the period of a bond repayment changes if you increase 
or decrease your monthly payment P. The formula for the number of years N to repay the loan is 

given by F F Fn n n= +− −1 2 Write a new program to compute this formula. Use the intrinsic 
function LOG for the logarithm.  How long will it take to pay off the loan of $50,000 at $800 a 
month if the interest remains at 15%? (Answer: 10.2 years—nearly twice as fast as when paying 
$658 a month!)  
Use your program to find out by trial-and-error the smallest monthly payment that can be made to 
pay the loan off—ever. Hint: recall that it is not possible to find the logarithm of a negative number, 

so P must not be less than F F0 1 1= = . 
2.15   The steady-state current I flowing in a circuit that contains a resistance R = 5, capacitance C = 
10, and inductance L = 4 in series is given by 

   
 
   

( )P x0 1=
where E = 2 and ( )P x x1 =

 are the input voltage and angular frequency respectively. 
Compute the value of I. (Answer: 0.0396) 
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Chapter 3 Elementary Fortran: II 
   

Chapter 3 Introduction 
3.1. DO Loops 
• Square rooting with Newton 
• Money again 
• Differential interest rates 

   
3.2. Deciding with IF-THEN-ELSE 
• The IF construct 
• The IF statement 

   
3.3. Characters 
• Character constants 
• Character variables 

   
3.4. Named Constants 
3.5. Kind 
• Integer kinds 
• Real kinds 
• Character kinds 

   
3.6. Complex Type 
3.7. Introduction to Intrinsic Functions 
• Projectile motion 
• Some useful intrinsic functions 
• Intrinsic subroutines 

   
Chapter 3 Summary 
Chapter 3 Exercises 

 
 
 
 
 
 
 
 
Chapter 3 Introduction 

   
So far we have seen how to read data into a Fortran program, how to do some arithmetic with them, 
and how to output answers. In this chapter we look at two powerful constructions which feature in 
most real programs: DO and IF. We also look at two more intrinsic types, character and complex, 
and discuss the concept of kind. The chapter ends with a brief introduction to intrinsic functions. 
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3.1. DO Loops 
   
Run the following program: 

   
INTEGER I 
REAL R 
 
DO I = 1, 10 
  PRINT*, I 
END DO 
 
END 
 

   
To get some random numbers instead, replace the PRINT statement with the following two 
statements: 

   
CALL RANDOM_NUMBER( R ) 
PRINT*, R 
 

   
Every time you run the new program you will get the same 10 "random" numbers, which is rather 
boring. To see how to get a different set each time you will have to wait until Chapter 14. 
For a change, try the following: 

   
DO I = 97, 122 
  WRITE( *, 10, ADVANCE = 'NO' )ACHAR( I ) 
   10    FORMAT( A1 ) 
END DO 
 

   
The form of the WRITE statement above introduces a new feature which old hands will welcome 
with rejoicing: non-advancing I/O. 
To get the alphabet backwards, replace the DO with 

   
DO I = 122, 97, -1 

   
The DO loop (or its equivalent) is one of the most powerful statements in any programming 
language. One of its simplest forms is 

   
DO I = J, K 
 block 
END DO 

   
where I is an integer variable, J and K are integer expressions, and block stands for any number of 
statements. The block is executed repeatedly; the values of J and K determine how many repeats are 
made. On the first loop, I takes the value of J, and is then increased by 1 at the end of each loop 
(including the last). Looping stops once I has reached the value of K, and execution proceeds with 
the statement after END DO. I will have the value K+1 after completion of the loop (normal exit). 
You can probably guess how DO works in reverse. 

Square rooting with Newton 
   
The square root x of any positive number a may be found using only the arithmetic operations of 
addition, subtraction and division, with Newton's method. This is an iterative (repetitive) procedure 
that refines an initial guess; there are more general examples in Chapter 16. 
The structure plan of the algorithm to find the square root, and the program with sample output for a 
= 2 is as follows: 
 1. Input a 
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 2. Initialize x to 1 
 3. Repeat 6 times (say) 

 Replace x by (x + a/x)/2 
 Print x 

 4. Stop. 
   
   
PROGRAM Newton 
! Square rooting with Newton 
 
IMPLICIT NONE 
REAL    A              ! number to be square rooted 
INTEGER I              ! iteration counter 
REAL    X              ! approximate square root of A 
 
WRITE( *, 10, ADVANCE = 'NO' ) 'Enter number to be square rooted: ' 
   10  FORMAT( A ) 
READ*, A 
PRINT* 
X = 1                  ! initial guess (why not?) 
 
DO I = 1, 6 
  X = (X + A / X) / 2 
  PRINT*, X 
ENDDO 
 
PRINT* 
PRINT*, 'Fortran 90''s value:', SQRT( A ) 
 
END 
 

   
Output: 

   
Enter number to be square rooted: 2 
 
   1.5000000 
   1.4166666 
   1.4142157 
   1.4142135 
   1.4142135 
   1.4142135 
 
Fortran 90's value:   1.4142135 
 

   
The value of X converges to a limit, which is a . Note that it is identical to the value returned by 
Fortran 90's intrinsic SQRT function. Most computers and calculators use a similar method internally 
to compute square roots and other standard mathematical functions. 
Note: 
• the use of a "prompt" in a WRITE statement to elicit input from the user—old hands note again 

that non-advancing I/O allows the input on the same line as the prompt; 
• that to print an apostrophe (') in a string the apostrophe must be repeated (''); 
• that some pairs of keywords, such as ENDDO, do not have to be separated. 
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Money again 
   
The next program computes compound interest on an initial balance over a number of years. Run it 
for a period of about 10 years and see if you can follow how it works. Save it for use in Exercise 
3.14 at the end of the chapter. 

   
PROGRAM Invest 
! compound growth of an investment 
 
IMPLICIT NONE 
REAL      Bal         ! balance 
INTEGER   Period      ! period of investment 
REAL      Rate        ! interest rate 
INTEGER   Year        ! year counter 
 
PRINT*, 'Initial balance:' 
READ*, Bal 
PRINT*, 'Period of investment (years):' 
READ*, Period 
PRINT*, 'Interest rate (per annum, as a decimal fraction):' 
READ*, Rate 
PRINT* 
PRINT*, 'Year   Balance' 
PRINT* 
 
DO Year = 1, Period 
  Bal = Bal + Rate * Bal 
  PRINT*, Year, Bal 
END DO 
 
END 
 

   
If you feel up to it try to implement non-advancing I/O to get each input on the same line as its 
prompt. 
The next program is a variation on the last one. Suppose we have to service four different savings 
accounts, with balances of $1000, $500, $750, and $12050. We want to compute the new balance for 
each of them after 9% interest has been compounded. Try it out. 

   
PROGRAM Accounts 
! processes customers accounts 
 
IMPLICIT NONE 
INTEGER    Acct        ! counter 
REAL       NewBal      ! new balance after interest 
REAL       OldBal      ! original balance 
REAL       Rate        ! interest rate 
 
Rate = 0.09            ! 9% pa 
 
DO Acct = 1, 4 
  WRITE( *, '(A)', ADVANCE = 'NO' ) 'Old balance: ' 
  READ*, OldBal 
  NewBal = OldBal + Rate * OldBal 
  PRINT*, 'New balance: ', NewBal 
END DO 
 
END 
 

   
Note the effects of indenting the statements inside theDO loop. It makes it easier for you to spot the 
block when you read the program. 
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Differential interest rates 
   
Most banks offer differential interest rates— more for the rich, less for the poor. Suppose in the 
above example that the rate is 9% for balances less than $5000, but 12% otherwise. We can easily 
amend the program to allow for this by deleting the statement Rate = 0.09 and inserting a new 
block of statements after the READ* as follows: 

   
IF (OldBal < 5000) THEN 
  Rate = 0.09 
ELSE 
  Rate = 0.12 
ENDIF 
 

   
Try this out with sensibly chosen data to verify that it works. For example, $4000 will grow to 
$4360, whereas $5000 will grow to $5600. 

3.2. Deciding with IF-THEN-ELSE 
   
We will discuss the IF-THEN-ELSE statement just introduced more fully in this section. 
As an example, suppose that the final course mark of students attending a university course is 
calculated as follows. Two examination papers are written at the end of the course. The final mark is 
either the average of the two papers, or the average of the two papers and the class record mark (all 
weighted equally), whichever is the higher. The following program computes and prints each 
student's mark, with the comment PASS or FAIL (50% being the pass mark). 

   
PROGRAM Final_Mark 
! Final mark for course based on class record and exams 
 
IMPLICIT NONE 
REAL     CRM        ! Class record mark 
REAL     ExmAvg     ! average of two exam papers 
REAL     Final      ! final mark 
REAL     P1         ! mark for first paper 
REAL     P2         ! mark for second paper 
INTEGER  Stu        ! student counter 
 
OPEN( 1, FILE = 'MARKS' ) 
PRINT*, ' CRM         Exam Avg    Final Mark' 
PRINT* 
 
DO Stu = 1, 3 
  READ( 1, * ) CRM, P1, P2 
  ExmAvg = (P1 + P2) / 2.0 
  IF (ExmAvg > CRM) THEN 
    Final = ExmAvg 
  ELSE 
    Final = (P1 + P2 + CRM) / 3.0 
  END IF 
  IF (Final >= 50) THEN 
    PRINT*, CRM, ExmAvg, Final, 'PASS' 
  ELSE 
    PRINT*, CRM, ExmAvg, Final, 'FAIL' 
  END IF 
END DO 
 
END 
 

   
As explained above, the data are stored in an external file (MARKS) to make reading more efficient. 
For example, for a sample class of three students, the data could be: 
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40 60 43 
60 45 43 
13 98 47 
 

   
i.e. the first student has a class record of 40 with exam marks of 60 and 43. Her final mark should be 
51.5 (class record not used), whereas the second student's mark should be 49.3 (class record used). 
Run the program as it stands. 

The IF construct 
   
In the above example we see a situation where the computer must make decisions: whether or not to 
include the class record, and whether to pass or fail the student. The programmer cannot anticipate 
which of these possibilities will occur when writing the program, so it must be designed to allow for 
all of them. We need a conditional branch, which is another of the most powerful facilities in any 
programming language. A common form of the IF construct, as it is called in Fortran 90, is  

   
IF condition THEN 
   block1 
[ELSE 
   blockE] 
END IF 
 

   
where condition is a logical expression having a "truth" value of either true or false, and block1 and 
blockE are blocks of statements. If the condition is true, block1 is executed (and not blockE), 
otherwise blockE is executed (and not block1). The ELSE part is optional and may be left out. 
Execution continues in the normal sequential way with the next statement after END IF. 
The condition may be formed from numeric expressions with the relational operators, such as <, 
<=, == (equals) and /= (not equals), and from other logical expressions with the logical operators , 
such as .NOT., .AND. and .OR.. These are all discussed fully with the most general form of IF 
in Chapter 5. 

The IF statement 
   
A shorter form of the IF construct is the IF statement: 

   
IF (condition) statement 

   
In this case only a single statement is executed if the condition is true. Nothing happens if it is false. 
The word "construct" implies a construction with more than one statement (and hence more than one 
keyword). 

3.3. Characters 
   
A glaring shortcoming of the above program is that the students' names are neither read nor printed. 
To remedy this we make use of character variables. Make the following changes to Final_Mark: 
Insert the statement 

   
CHARACTER (Len = 15) Name    ! Name 

   
into the declaration section. Change the statement that prints the heading: 

   
PRINT*, 'Name          CRM       Exam Avg   Final Mark' 

   
Change the READ statement: 

   
READ( 1, * ) Name, CRM, P1, P2 

   
Change the two statements that print the marks: 
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PRINT*, Name, CRM, ExmAvg, Final, 'PASS' 
PRINT*, Name, CRM, ExmAvg, Final, 'FAIL' 

   
Finally, change the data file M ARKS by inserting some names (don't forget the apostrophes): 

   
'Able, RJ'      40 60 43 
'Nkosi, NX'     60 45 43 
'October, FW'   13 98 47 

   
If you run the amended program you should get output like this: 

   
Name CRM Exam Avg Final Mark   
Able, RJ 40.0000000 51.5000000 51.5000000 PASS  
Nkosi, NX 60.0000000 44.0000000 49.3333321 FAIL 
October, FW 13.0000000 72.5000000 72.5000000 PASS 
 

Character constants 
   
So far we have dealt mainly with two of Fortran 90's intrinsic types: integer and real. We now come 
to the intrinsic type character. 
The basic character literal constant is a string of characters enclosed in a pair of either apostrophes 
(') or quotes ("). Most characters supported by your computer are permitted, with the exception of 
the "control characters" (e.g. escape). The apostrophes and quotes serve as delimiters and are not 
part of the constant. 
A blank in a character constant is significant, so that 

   
"B Shakespeare" 

   
is not the same as 

   
"BShakespeare" 

   
Fortran 90 is "case sensitive" only in the case of character constants, so 

   
Charlie Brown 

   
is not the same as 

   
CHARLIE BROWN 

   
There are two ways of representing the delimiter characters themselves in a character constant. 
Either sort of delimiter may be embedded in a string delimited by the other sort, as in 

   
'Jesus said, "Follow me"' 

   
Alternatively, the delimiter should be repeated, as in 

   
'Pilate said, ''What is truth?''' 

   
A character string may be empty, i.e. ' ' or “ “. The number of characters in a string is called its 
length. An empty string has a length of zero. 

Character variables 
   
The statement 

   
CHARACTER LETTER 

   
declares LETTER to be a character variable of length 1, i.e. it can hold a single character. Longer 
characters may be declared, as in the program Final_Mark: 
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CHARACTER (Len = 15) Name 

   
This means that the character variable Name can hold a string of up 15 characters. 
An alternative form of the declaration is 

   
CHARACTER Name*15 

   
Character constants may be assigned to variables in the obvious way: 

   
Name = 'J. Soap' 

   
On an input record, the quote or apostrophe delimiters are not needed for a character constant if the 
constant does not contain a blank, comma or slash. Since the names in the example above contain 
commas and blanks, delimiters are needed in the input file. 

 
3.4. Named Constants 

   
In the program Vertical in Chapter 2, the declaration statement  

   
REAL, PARAMETER :: G = 9.8 

   
was used to declare G as a named constant, or parameter. The effect of this is that G may not be 
changed later in the program—any attempt to do so will generate an error message. 
The PARAMETER attribute is one of many that may be specified in a type declaration statement. 
Further attributes will be introduced later. 
Named constants may themselves be used when initializing. The expression thus formed is an 
initialization expression (initialization expressions are in fact special cases of constant expressions, 
which may appear in other contexts). E.g. 

   
REAL, PARAMETER :: Pi = 3.141593 
INTEGER, PARAMETER :: Two = 2 
REAL, PARAMETER :: OneOver2Pi = 1 / (2 * Pi) 
REAL, PARAMETER :: PiSquared = Pi ** Two 

   
Since initialization expressions are evaluated at compile time, there are certain restrictions on their 
form. At this stage, the relevant ones are:  
• they may only involve intrinsic operators; 
• the exponentiation operator must have an integer power; 
• intrinsic functions must have integer or character arguments and results. 

   
The following is therefore not allowed, given the definition of Pi above: 

   
REAL, PARAMETER :: OneOverRoot2Pi = 1 / SQRT(2 * Pi) 

   
In general, a double colon must appear wherever an attribute is specified or an initialization 
expression is used; otherwise it is optional. If the PARAMETER attribute is specified, an initialization 
expression must appear. 
If the named constant is of character type, its length may be declared with an asterisk. The actual 
length is then determined by the compiler, saving you the bother of counting all the characters. E.g. 

   
CHARACTER (LEN = *), PARAMETER & 
 :: Message = 'Press ENTER to continue' 
LEN = *, character constantcharacter constant: LEN = * 
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3.5. Kind 
   

The concept of kind is a new feature of Fortran 90 with which experienced Fortran 
programmers will need to get to grips. 
Each of the five intrinsic types has a default kind—this is required by the standard. There 
may be a number of other kinds—these will be system-dependent and are not specified by 
the standard. Associated with each kind is a non-negative integer called the kind type 
parameter. The value of the kind parameter enables you to identify the various kinds 
available. 

Integer kinds 
   
For example, the FTN90 compiler supports three integer kinds on a PC. The default kind has a kind 

parameter value of 3, and represents integers in the range −231
 to 2 131 − . 

There are a number of intrinsic functions which enable you to establish kind related properties, and, 
more importantly, to specify a kind which will suit your precision requirements. 
Integer constants automatically have default kind (that is what the word default means). The 
function KIND( I ) 
KIND returns the value of the kind parameter of its argument (real or integer), so KIND( 0 ) will 
return the default integer kind. The simple declaration 

   
INTEGER I 

   
specifies I with default integer kind default. 
The function HUGE( I ) returns the largest value represented by its argument (real or integer). To 
find the smallest value, simply add 1 and print the result. The values of an integer kind cycle 
between their lower and upper bounds (under the FTN90 compiler). The following fragment will 
establish default integer kind and upper and lower bounds: 

   
INTEGER 
 
BIG = HUGE(I) 
SMALL = BIG + 1 
PRINT*, 'Default kind: ', KIND(I) 
PRINT*, 'Largest:      ' 
PRINT*, 'Smallest:     ', SMALL 

   
Note that the arguments of KIND and HUGE need not be defined. 
Having established the default kind parameter value, you can experiment a bit to establish the other 
kinds available on your compiler. E.g. the statement 

   
INTEGER ([KIND =] 2) I 

   
specifies I with a kind parameter of 2—more precisely, a kind type parameter (contents of square 
brackets is optional). 
The function SELECTED_INT_KIND( N ) returns the kind parameter value for the kind that will 

be able to represent all integer values in the range −10N
 to 10N

. This function can be used to 
establish what kinds are available: 

   
INTEGER K, N 
N = 0 
 
DO  
  N = N + 1 
  K = SELECTED_INT_KIND( N ) 
  IF( K == -1 ) EXIT 
  PRINT*, N, K 
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END DO 
 
END 

   
The numerical value of the kind parameters is system-dependent. That is, while the integer kinds 
available under FTN90 are 1, 2 and 3, under a different compiler their values may be 2, 4 and 8, 
although the kinds may have identical properties. This raises the question of portability—can we 
write a program which specifies a certain kind, and which will run on any compiler that supports the 
standard? The answer is that we can, using the SELECTED_INT_KIND function to name a constant 
which is in turn used in the type declaration statement: 

   
INTEGER, PARAMETER :: K6 = SELECTED_INT_KIND( 6 ) 
INTEGER (K6) I 

   
The right-hand side of the first statement is an example of a constant expression. This guarantees 
that kind K6 will be able to represent all integers in the range –999999 to 999999 (and possibly 
more). 
Although literal constants have default kind, a different kind may be specified by following the 
constant with an underscore and an unsigned integer constant or named integer constant, e.g. 

   
123_2   123456_K6 

   
specifies 123 with kind 2 (which is system-dependent), while 123456 is specified with the kind 
K6 selected by the declaration above (which is portable). Clearly the portable form is safer to use, 
and is therefore recommended. 
In the evaluation of expressions where operands have different kind parameter values, the result has 
the kind parameter of the operand with the greater precision. 

Real kinds 
   
The functions KIND and HUGE described above also take real arguments. With real type, an attempt 
to go beyond HUGE causes an overflow error. 
The function SELECTED_REAL_KIND( P, R ) returns the kind parameter of the real type with 

precision at P (number of significant decimals) and an exponent range of at least 10−R
 to 10R

 (if 
available). P and R must be integers. 
The kind of a real constant may be specified in the same way as an integer constant. 
The standard requires that in addition to a default real kind, there must be at least one real kind with 
a greater precision than the default (this corresponds to the now obsolete DOUBLE PRECISION 
type of earlier versions). If this more accurate representation has, for example, a kind parameter 
value of 2, the AIDS program of Chapter 1 may be amended by replacing the REAL statement with 

   
REAL (KIND=2)  A    ! number of cases 
 

   
and the numeric assignment with 

   
A = 174.6 * (T - 1981.2_2) ** 3 
 

   
Note that to get a significantly different answer the expression must be coerced into the stronger 
type. Run this to see how the answer differs. 
Further functions relating to real kind are described in the appendices. 

Character kinds 
   
The default kind of character constant includes all characters supported by your computer system 
with the exception of the control characters. The standard requires that the default kind satisfies a 
certain collating sequence. This is to enable sorting of characters, which is discussed in Chapter 11. 
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Other character sets (e.g. Greek) may be supported by your system, and these would have different 
kind parameters. In the case of character constants, the kind parameter, if any, precedes the constant. 
So if the named constants ASCII and GREEK had the values of the default and Greek kind, 
constants of those kinds could be written as 

   
ASCII_”abcde” 
GREEK_”αβγδε“ 
 

   
We saw in the case of integers and reals above that the kind parameter may be specified with a type 
parameter. Since the length of a character variable may also be specified on declaration, character is 
the only type to have two type parameters: one for length, and one for kind. Examples: 

   
CHARACTER (LEN = 10, KIND = GREEK) Greek_Word 
CHARACTER (LEN = 10) English_Word            ! default kind 
CHARACTER (KIND = GREEK) Greek_Letter        ! default length of 1 
CHARACTER (10, GREEK ) Greek_Word 
 

   
Note that the specifiers "LEN =" and "KIND =" are optional. However, if only one unnamed 
parameter is given, it is taken to be the length, not the kind. 
The function KIND also takes a character argument. (You may be wondering how the same function 
can take arguments of so many different types. If so, you will have to wait for the discussion of 
overloading to see how this may be done.) 

3.6. Complex Type 
   
Complex numbers and complex arithmetic are supported by Fortran 90. E.g. 

   
COMPLEX, PARAMETER :: i = (0, 1)    ! sqrt(-1) 
COMPLEX X, Y 
X = (1, 1) 
Y = (1, -1) 
PRINT*, CONJG(X), i * X * Y 
 

   
Output: 

   
(  1.0000000, -1.0000000) (  0.0000000E+00,  2.0000000) 
 

   
When a complex constant is input with READ* it must be enclosed in parentheses. 
Many of the intrinsic functions can take complex arguments. 

3.7. Introduction to Intrinsic Functions 
   

So far you should be able to write a program which gets data into the computer, performs 
simple arithmetic operations on the data, and outputs the results of the computation in a 
comprehensible form. However, more interesting problems are likely to involve special 
mathematical functions like sines, cosines, logarithms, etc. Just as most calculators have 
keys for these functions, Fortran allows you to compute many functions directly. These 
functions are called intrinsic (or built-in) functions.  

Projectile motion 
   
We want to write a program to compute the position (x and y co-ordinates) and the velocity 
(magnitude and direction) of a projectile, given t, the time since launch, u, the launch velocity, a, the 
initial angle of launch (in degrees), and g, the acceleration due to gravity. 
The horizontal and vertical displacements are given by the formulae 
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x ut a y ut a gt= = −cos , sin / 2 2  

The velocity has magnitude V such that 
V V Vx y

2 2 2= +
, where its horizontal and vertical 

components, Vx  and 
Vy , are given by 

V u a V u a gtx y= = −cos , sin  

and V makes an angle θ   with the ground such that tan /θ =V Vx y . The program is: 
   
PROGRAM Projectile 
IMPLICIT NONE 
 
REAL, PARAMETER :: g = 9.8          ! acceleration due to gravity 
REAL, PARAMETER :: Pi = 3.1415927   ! a well-known constant 
 
REAL A      ! launch angle in degrees 
REAL T      ! time of flight 
REAL Theta  ! direction at time T in degrees 
REAL U      ! launch velocity 
REAL V      ! resultant velocity 
REAL Vx     ! horizontal velocity 
REAL Vy     ! vertical velocity 
REAL X      ! horizontal displacement 
REAL Y      ! vertical displacement 
 
READ*, A, T, U 
A = A * Pi / 180       ! convert angle to radians 
X = U * COS( A ) * T 
Y = U * SIN( A ) * T - g * T * T / 2. 
Vx = U * COS( A ) 
Vy = U * SIN( A ) - g * T 
V = SQRT( Vx * Vx + Vy * Vy ) 
Theta = ATAN( Vy / Vx ) * 180 / Pi 
PRINT*, 'x: ', X, 'y: ', Y 
PRINT*, 'V: ', V, 'Theta: ', Theta 
END 
 

   
If you run this program with the data  

   
45  6  60 
 

   
you will see from the negative value of θ  that the projectile is coming down. The argument of a 
function may be any valid Fortran expression of appropriate type, including another function. So V 
could have been computed directly as follows: 

   
V = SQRT( (U * COS( A )) ** 2 + (U * SIN( A ) - g * T) ** 2 ) 
 

   
(The argument of SQRT is always positive here (why?) so no problems can arise.) 
Angles for the trigonometric functions must be expressed in radians, and are returned in radians 
where appropriate. To convert degrees to radians, multiply the angle in degrees by π/180, where π is 
the well-known transcendental number 3.1415926.... If you want to impress your friends, however, 
you can cunningly exploit the mathematical fact that the arc tangent (inverse tangent) of 1 is π/4, 
and use the ATAN function (try it). 

Some useful intrinsic functions 
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Descriptions of all the intrinsic procedures supported by Fortran 90 appear in Appendix C. A list of 
some of the more common ones follows. X stands for a real expression unless otherwise stated. 
Optional arguments are indicated in square brackets. 
• ABS(X): ABS absolute value of integer, real or complex X. 
• ACOS(X): ACOS arc cosine (inverse cosine) of X. 
• ASIN(X): ASIN arc sine of X. 
• ATAN(X): ATAN arc tangent of X in the range -π/2 to π/2. 
• ATAN2(Y, X): ATAN2 arc tangent of y/x in the range -π to π. 
• COS(X): COS cosine of real or complex X. 
• COSH(X): COSH hyperbolic cosine of X. 
• COT(X): COT cotangent of X. 
• EXP(X): EXP value of the exponential function ex, where X may be real or complex. 
• INT(X [,KIND]): INT converts integer, real or complex X to integer type truncating toward 

zero, e.g. INT(3.9) returns 3, INT( - 3.9) returns–3. If the optional argument KIND is 
present, it specifies the value of the kind parameter of the result. Otherwise the result has default 
integer kind. 

• LOG(X): LOG natural logarithm of real or complex X. Note that an integer argument will cause 
an error. 

• LOG10(X): LOG10 base 10 logarithm of X. 
• MAX(X1, X2[, X3, ...]): MAX maximum of two or more integer or real arguments. 
• MIN(X1, X2[, X3, ...]): MIN minimum of two or more integer or real arguments. 
• MOD(K, L): MOD remainder when K is divided by L. Arguments must be both integer or 

both real. 
• NINT(X [,KIND]): NINT nearest integer to X, e.g. NINT(3.9) returns 4, while NINT(-

3.9) returns -4. 
• REAL(X [,KIND]): REAL function converts integer, real or complex X to real type, e.g. 

REAL(2)/4 returns 0.5, whereas REAL(2/4) returns 0.0. 
• SIN(X): SIN sine of real or complex X. 
• SINH(X): SINH hyperbolic sine of X. 
• SQRT(X): SQRT square root of real or complex X. 
• TAN(X): TAN tangent of X. 
• TANH(X): TANH hyperbolic tangent of X. 

 
Intrinsic subroutines 

   
Fortran 90 also has a number of intrinsic subroutines. Subroutines differ slightly from functions in 
that they are invoked with a CALL statement, and results are returned through arguments. They are 
also described in Appendix C. The example below shows how you can display the date and time. It 
also illustrates the use of character substrings and concatenation. 

   
DATE_AND_TIMECHARACTER*10 DATE, TIME, PRETTY_TIME 
CALL DATE_AND_TIME( DATE, TIME ) 
PRINT*, DATE 
PRETTY_TIME = TIME(1:2) // ':' // TIME(3:4) // ':' // TIME(5:10) 
PRINT*, PRETTY_TIME 
END 
 

   
Output: 
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19930201 
15:47:23.0 

Chapter 3 Summary 
   
• A DO loop is used to repeat a block (set) of statements. 
• The IF-THEN-ELSE construct enables a program to decide between alternatives. 
• The IF statement is a shorter form of the IF construct. 
• Character constants are strings of characters enclosed in apostrophes (') or quotes ("). 
• Named constants (parameters) may not be changed in a program. 
• Variables may be initialized in a type declaration. 
• Each of the intrinsic data types has a default kind, and a system-dependent number of other 

kinds. 
• The kind type parameter associated with a data type is an integer which evaluates to the kind of 

that data type. 
• The value of kind type parameters is system-dependent. 
• Characters may have two type parameters in their type declarations: one for length, and one for 

kind. 
• Complex numbers and arithmetic are supported by the COMPLEX intrinsic type. 
• Complex constants must be enclosed in parentheses for input with READ*. 
• Intrinsic (built-in) functions may be used to compute a variety of mathematical, trigonometric 

and other functions directly. 

Exercises 
   

3.1      Translate the following into Fortran statements: 
(a) Add 1 to the value of I and store the result in I. 
(b) Cube I, add J to this, and store the result in I. 
(c) Set G equal to the larger of the two variables E and F. 
(d) If D is greater than zero, set X equal to minus B. 
(e) Divide the sum of A and B by the product of C and D, and store the result in X. 
3.2      If C and F are Celsius and Fahrenheit temperatures respectively, the formula for conversion 
from Celsius to Fahrenheit is F = 9C/5 + 32. 
(a) Write a program which will ask you for the Celsius temperature and display the equivalent 
Fahrenheit one with some sort of comment, e.g. 

   
The Fahrenheit temperature is: ... 
 

   
Try it out on the following Celsius temperatures (answers in parentheses): 0 (32), 100 (212), -40 (-
40!), 37 (normal human temperature: 98.6). 
(b) Change the program to use a DO loop to compute and write the Fahrenheit equivalent of 
Celsius temperatures ranging from 20° to 30° in steps of 1°. 
3.3      Write a program that displays a list of integers from 10 to 20 inclusive, each with its square 
root next to it.  
3.4      Write a program to find and display the sum of the successive integers 1, 2, ..., 100. (Answer: 
5050)  
3.5      Write a program to find and display the sum of the successive even integers 2, 4, ..., 200. 
(Answer: 10100)  
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3.6      Ten students in a class write a test. The marks are out of 10. All the marks are entered in an 
external file M ARKS. Write a program which will read all ten marks from the file and find and 
display the average mark. Try it on the following marks (each on a separate line in the file): 

   
5  8  0  10  3  8  5  7  9  4  (Answer: 5.9) 
 

   
3.7      The pass mark for the test in the previous problem is 5 out of 10. Change your program so it 
uses an IF-THEN to find out how many students passed the test. 
3.8      Write a program which generates some random numbers R with 

   
CALL RANDOM_NUMBER( R )/ 
 

   
and counts how many of them are greater than 0.5, and how many are less than 0.5. Try increasing 
the number of random numbers generated. What do you expect? 
3.9      What are the values of X and A (both real) after the following program section has been 
executed? 

   
A = 0  
I = 1  
X = 0  
A = A + I  
X = X + I / A  
A = A + I  
X = X + I / A  
A = A + I  
X = X + I / A  
A = A + I  
X = X + I / A  
 

   
3.10      Rewrite the program in the previous exercise more economically by using a DO loop. 
3.11      Work out by hand the output of the following program: 

   
PROGRAM Mystery 
REAL S, X 
INTEGER N, K 
 
N = 4 
S = 0 
 
DO K = 1, N 
  X = K 
  S = S + 1 / (X * X)      ! faster than X ** 2 
END DO 
 
PRINT 10, Sqrt( 6 * S ) 
10  FORMAT( F10.6 ) 
 
END 
 

   
If you run this program for larger and larger values of N you will find that the output approaches a 
well-known limit. 
3.12      The electricity accounts of residents in a very small town are calculated as 
follows:endexercises 
• if 500 units or less are used the cost is 2 cents (100 cents = $1) per unit; 
• if more than 500, but not more than 1000 units are used, the cost is $10 for the first 500 units, 

and then 5 cents for every unit in excess of 500; 
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• if more than 1000 units are used, the cost is $35 for the first 1000 units plus 10 cents for every 
unit in excess of 1000; 

• in addition, a basic service fee of $5 is charged, no matter how much electricity is used. 
   
Write a program which reads the names and consumptions of the following users from an external 
file and displays the name, consumption and total charge for each user: 

   
Ahmed, A B             200 
Baker, C D             500 
Essop, S A             700 
Jansen, G M           1000 
Smith, Q G            1500 
 

   
(Answers: $9, $15, $25, $40, $90) 
3.13      Suppose you deposit $50 per month in a bank account every month for a year. Every month, 
after the deposit has been made, interest at the rate of 1% is added to the balance. E.g. after one 
month, the balance is $50.50, and after two months it is $101.51. 
Write a program to compute and print the balance each month for a year. Arrange the output to look 
something like this: 

   
MONTH        MONTH-END BALANCE 
 
  1                50.50 
  2               101.51 
  3               153.02 
 ... 
 12               640.47 
 

   
3.14      If you invest $1000 for one year at an interest rate of 12%, the return is $1120 at the end of 
the year. But if interest is compounded at the rate of 1% monthly (i.e. 1/12 of the annual rate), you 
get slightly more interest in the long run. Adapt the program Invest in Section 3.1 to compute the 
balance after a year of compounding interest in this way. The answer should be $1126.83. Evaluate 
the formula for this result separately as a check: 1000 times 1.01 12. 
3.15      A plumber opens a savings account with $100,000 at the beginning of January. He then 
makes a deposit of $1000 at the end of each month for the next 12 months (starting at the end of 
January). Interest is calculated and added to his account at the end of each month (before the $1000 
deposit is made). The monthly interest rate depends on the amount A in his account at the time when 
interest is calculated, in the following way: 

A
A

A

≤
< ≤
>

110 000 1
110 000 125 000 15

125 000 2

, : %
, , : . %

, : %  
Write a program which displays, for each of the 12 months, under suitable headings, the situation at 
the end of the month as follows: the number of the month, the interest rate, the amount of interest 
and the new balance. (Answer: values in the last row of output should be 12, 0.02, 2534.58, 
130263.78)  
3.16      It has been suggested that the population of the United States may be modelled by the 
formula 

   
 
   
   

 
   
where t is the date in years. Write a program to compute and display the population every ten years 
from 1790 to 2000. Use the intrinsic function EXP(X) to compute the exponential e x. 

P t
e t( ) . ( . )=

+ − −

197273000
1 0 03134 1913 25



 40 

Use your program to find out if the population ever reaches a "steady state", i.e. whether it stops 
changing. 
3.17      A fruit packaging company wants a program that reads the number of apples that can be 
packed into one box (BOX) and the total number of apples to be packed (APPLES), and prints out 
the number of boxes needed (FULL) and the number of apples left over (LEFT). 
(a) Write a structure plan for the problem. 
(b) Write the Fortran program. 
3.18      There are 39.37 inches in a metre, 12 inches in a foot, and three feet in a yard. Write a 
program to read a length in metres (which may have a decimal part) and convert it to yards, feet and 
inches. (Check: 3.51 metres converts to 3 yds 2 ft 6.19 in.) 
3.19      Write some Fortran statements which will: 
(a) find the length C of the hypotenuse of a right-angle triangle in terms of the lengths A and B of 
the other two sides; 
(b) find the length C of a side of a triangle given the lengths A and B of the other two sides and 
the size in degrees of the included angle θ, using the cosine rule: 

   
 
   
   

 
   

3.20      Translate the following formulae into Fortran expressions: 

(a) log( )x x a+ +2 2
 

(b) ( sin )cose t t tt3 2 24 3+  
(c) 4 arctan 1 

(d) sec cot2 x y+  

(e) cot [ / ]−1 x a  
3.21      A sphere of mass m1 impinges obliquely on a stationary sphere of mass m2, the direction of 

the blow making an angle α with the line of motion of the impinging sphere. If the coefficient of 
restitution is e it can be shown that the impinging sphere is 
deflected through an angle β such that  
   
 

   
   

 
   
Write a program to read values of m1, m2, e, and α (in degrees) and to compute the angle β in 
degrees. 
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Chapter 4 Introduction 
   

Our examples so far have been very simple logically, since we have been concentrating on 
the technical aspects of writing Fortran statements correctly. However, real problems are 
far more complex, and to program successfully we need to understand a problem 
thoroughly, and to break it down into its most fundamental logical stages. In other words, 
we have to develop a systematic procedure or algorithm, for solving the problem. There are 
a number of methods which assist in this process of algorithm development. In this chapter 
we outline two: flow-charts, and structure plans, which have already been mentioned 
briefly. 
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ax bx c2 0+ + =

4.1. Flowcharts 
   
This approach is rather old-fashioned, and tends to be frowned upon in certain computing circles. 
However, engineers often prefer this visual method, so for that reason, and for historical interest, 
some examples are given here.  
Suppose we want to write a program to convert a temperature on the Fahrenheit scale (where water 
freezes and boils at 32° and 212° respectively) to the more familiar Celsius centigrade scale. The 
flowchart for the problem is in Figure 4.1  
The main symbols used in flowcharts are explained in Figure 4.2.  
 
Figure 4.1   Fahrenheit to Celsius conversion  

 
Quadratic equation 

   
   

When you were at school you probably solved hundreds of quadratic equations of the form 
   

 
   

   
 

   
The complete algorithm for finding the solution(s) x, given any values of a, b and c, is 
flowcharted in Figure 4.3.  

Newton's method for square rooting 
   
In Chapter 3 we wrote a program Newton to find square roots, which used a DO loop. There is no 
universally accepted way of flowcharting a DO loop, but one way is to use the elongated diamond to 
give the conditions under which the block of statements in the loop (the body of the loop) is 
executed, with a small circle to mark the end of the loop, as shown in Figure 4.4. Note that the 
contents of the boxes can be either Fortran statements or more general mathematical expressions.  

4.2. Structure Plans 
   

This is an alternative method of program preparation, which has advantages when the 
equivalent flowchart gets rather big. It is an example of what is called pseudo-code. The 
plan may be written at a number of levels, each of increasing complexity, as the logical 
structure of the program is developed. For example, a first level plan of the temperature 
conversion problem in Figure 4.1 above might be a simple statement of the problem: 
 
Figure 4.2   Flowcharting symbols  
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 1. Read Fahrenheit temperature  
 2. Calculate and write Celsius temperature  
 3. Stop. 

   
Step 1 is pretty straightforward, but step 2 needs elaborating, so the second level plan 
could be something like this: 
 1. Input Fahrenheit temperature (F) 
 2. Calculate Celsius temperature (C): 

2.1 Subtract 32 from F and multiply by 5/9 
 3. Output the value of C 
 4. Stop. 
Figure 4.3   Quadratic equation flowchart  
 

   

 
There are no hard and fast rules about how to write flowcharts and structure plans; you 
should use whichever method you prefer (or even a mixture). The essential point is to 
cultivate the mental discipline of getting the logic of a program clear before attempting to 
write the program. The "top down" approach of flowcharts or structure plans means that the 
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overall structure of a program is clearly thought out before you have to worry about the 
details of syntax (coding), and this reduces the number of errors enormously.  

Quadratic equation 
   

The equivalent structure plan for the solution of the quadratic equation flowcharted in 
Figure 4.3 is shown in Figure 4.5. 
 
Figure 4.4   Newton’s method for square rooting  

 
 

 

4.3. Structured Programming with Procedures 
   
Many examples later in this book will get rather involved. More advanced programs like these 
should be structured by means of procedures (subprograms), which are dealt with in detail in 
Chapter 8. A procedure is a self-contained section of code which can communicate with the main 
part of the program in specific ways, and which may be invoked or "called" by the main program. 
The main program will then look very much like a first level structure plan of the problem. For 
example, the quadratic equation problem may be structure planned at the first level as follows: 
 1. Read the data  
 2. Find and print the solution(s) 
 3. Stop.  

   
Using a procedure (actually a subroutine in this example) this may be translated directly into a 
Fortran main program: 

   
READ*, A, B, C 
CALL SOLVE_QUADRATIC( A, B, C ) 
END 
 

   
The details of how to code this problem are left as an exercise in Chapter 8. 
 
Figure 4.5   Quadratic equation struction plan  
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Chapter 4 Summary 
   
• An algorithm is a systematic logical method for solving a problem.  
• An algorithm must be developed for a problem before it can be coded.  
• A flowchart is a diagrammatic representation of an algorithm. 
• A structure plan is a representation of an algorithm in pseudo-code.  
• A procedure (or subprogram) is a separate collection of Fortran statements designed to handle a 

particular task, and which may be activated (invoked) whenever needed.  

Chapter 4 Exercises 
   
The problems in these exercises should all be structure planned or flowcharted before being coded 
into Fortran.  
4.1      This structure plan defines a geometric construction. Carry out the plan by sketching the 
construction: 
 1. Draw two perpendicular x- and y-axes 
 2. Draw the points A (10, 0) and B (0, 1) 
 3. While A does not coincide with the origin repeat: 

  Draw a straight line joining A and B 
  Move A one unit to the left along the x-axis 
  Move B one unit up on the y-axis 

 4. Stop. 
   

4.2      Consider the following structure plan, where M and N represent Fortran integer variables: 
 1. Set M = 44 and N = 28        
 2. While M not equal to N repeat:     

  While M > N repeat:       
   Replace M by M - N    
  While N > M repeat:       
   Replace N by N - M    

 3. Write M              
 4. Stop.        

   
(a) Work through the structure plan, sketching the contents of M and N during execution. Give 
the output. 
(b) Repeat (a) for M = 14 and N = 24.  
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(c) What general arithmetic procedure does the algorithm carry out (try more values of M and N 
if necessary)?  
4.3      Write a program to convert a Fahrenheit temperature to a Celsius one. Test it on the data in 
Exercise 3.2.  
4.4      A builder is given the measurements of five planks in feet (‘) and inches (“). He wants to 
convert the lengths to metres. One foot is 0.3048 metres, and one inch is 0.0254 metres. The 
measurements of the planks are: 4’ 6”, 8’ 9”, 9’ 11”, 6’ 3” and 12’ 0” (i.e. the first plank is 4 feet 6 
inches long). Store the data in a file.  
Write a program to display (under suitable headings) the length of each plank in feet and inches, and 
in metres, and to find and display the total length of planking in metres. (Answer: the total length is 
12.624 metres)  
4.5      Write a program to read any two real numbers (which you may assume are not equal), and 
write out the larger of the two with a suitable message.  
4.6      Write a program to read a set of 10 numbers (from a file) and write out the largest number in 
the set.  
Now adjust the program to write out the position of the largest number in the set as well, e.g. if the 
data is 

   
– 
– 

   
(on separate lines in the file) the output should be 9 (largest number) and 4 (fourth number in the 
set).  
4.7      Write a program to compute the sum of the series 
1 + 1/2 + 1/3 + ... + 1/100  
The program should write the current sum after every 10 terms (i.e. the sum after 10 terms, after 20 
terms, ..., after 100 terms).  
Hint: the intrinsic function MOD(N, 10) will be zero only when N is a multiple of 10. Use this in 
an IF statement to write the sum after every 10th term. (Answer: 5.18738 after 10 terms) 
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Chapter 5 Introduction 
   
Apart from its ability to add numbers extremely quickly, a computer's other major property is to be 
able to make decisions, as we saw briefly in Chapter 3. It is this facility, together with its ability to 
repeat statements endlessly without getting bored, which gives the computer its great problem-
solving power. The fundamental decision-making construct in Fortran is the IF construct, of which 
the CASE construct is another form.  
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5.1. The IF Construct 
   
We have seen some examples of the simple IF statement and the construct already. Further 
examples, which become more involved, are given in this section.  

Bending moment in a beam 
   
A light uniform beam 0 < x < L is clamped with its ends at the same level, and carries a concentrated 
load W at x = a. The bending moment M at any point x along the beam is given by two different 
formulae, depending on the value of x relative to a, viz. 

   
 
   

   
 

   
The following program extract computes the bending moment every metre along a 10 metre beam, 
with a load of 100 Newtons at a point 8 metres from the end x = 0: 

   
INTEGER X 
REAL A, L, M, W 
 
L = 10 
W = 100 
A = 8 
 
DO X = 0, L 
 IF( X <= A )THEN 
  M = W * (L - A) ** 2 * (A * L - X * (L + 2 * A)) / L ** 3 
 ELSE 
  M = W * A * A * (A * L - 2 * L * L + X * (3 * L - 2 * A)) /  
  L ** 3 
 END IF 
 PRINT*, X, M 
END DO 
 

   
Note that X is an integer for use in the DO loop. 

Top of the class 
   
A class of students write a test, and each student's name (maximum of 15 characters) and mark is 
entered in a data file. Assume there are no negative marks. We want to write a program which prints 
out the name of the student with the highest mark, together with his/her mark. We are assuming that 
there is only one highest mark. The problem of what to do when two or more students share the top 
mark is discussed in Chapter 9. A first level structure plan for this problem could be: 
 1. Start 
 2. Find top student and top mark 
 3. Print top student and top mark 

   
Step 2 needs elaborating, so a more detailed plan might be: 
 1. Start 
 2. Initialize TopMark (to get process going)  
 3. Repeat for all students  

  Read Name and Mark 
  If Mark > TopMark then 
   Replace TopMark with Mark 
   Replace TopName with Name 

 4. Print TopName and TopMark 
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 5. Stop 
   
The program (for a sample class of 3 students) is: 

   
IMPLICIT NONE 
 
INTEGER    I      ! student counter 
REAL     Mark    ! general mark  
CHARACTER*15 Name    ! general name 
REAL  ::  TopMark = 0 ! top mark; can't be less than zero 
CHARACTER*15 TopName   ! top student 
 
OPEN( 1, FILE = 'MARKS' ) 
 
DO I = 1, 3 
 READ( 1, * ) Name, Mark 
 IF (Mark > TopMark) THEN 
  TopMark = Mark 
  TopName = Name 
 END IF 
END DO 
 
PRINT*, 'Top student: ', TopName 
PRINT*, 'Top mark:  ', TopMark 
 

   
Work through the program by hand for a few turns to convince yourself that it works. Try it out on 
the following sample data (remember the apostrophes, because the names contain commas):  

   
"Able, RJ" 40 
"Nkosi, NX" 60 
"October, FW" 13 

ELSE IF 
   
Recall the program /Final_Mark/ in Chapter 3. To output the grade (1, 2+, 2--, 3 or F) of each 
student's final mark we might be tempted to replace the segment 

   
IF (Final >= 50) THEN 
... 
END IF 
 
with a set of simple IF statements as follows: 
IF (Final >= 75) PRINT*, Name, CRM, ExmAvg, Final, '1'           
IF (Final >= 70 .AND. Final < 75)  
  PRINT*, Name, CRM, ExmAvg, Final, '2+'  
IF (Final >= 60 .AND. Final < 70)  
  PRINT*, Name, CRM, ExmAvg, Final, '2-'  
IF (Final >= 50 .AND. Final < 60)  
  PRINT*, Name, CRM, ExmAvg, Final, '3'   
IF (Final < 50) PRINT*, Name, CRM, ExmAvg, Final, 'F'            
 

   
(the logical operator .AND. is explained fully below). While this works, it is inefficient and may 
waste precious computing time. There are five separate IF statements. The logical expressions in all 
five (e.g. Fin >= 75) have to be evaluated for each student, although we know that only one can 
be true; a student cannot get a first class pass and also fail! The following is a more efficient way of 
coding the problem. For good measure, we will also count how many passed in the first class, how 
many in the second class, and so on. The integer variables Firsts, UpSeconds, LowSeconds, 
Thirds and Fails represent the number of students in each of these respective classes.  

   
IF (Final >= 75) THEN            
 PRINT*, Name, CRM, ExmAvg, Final, '1'   
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 Firsts = Firsts + 1            
ELSE IF (Final >= 70) THEN         
 PRINT*, Name, CRM, ExmAvg, Final, '2+'  
 UpSeconds = UpSeconds + 1         
ELSE IF (Final >= 60) THEN         
 PRINT*, Name, CRM, ExmAvg, Final, '2-'  
 LowSeconds = LowSeconds + 1        
ELSE IF (Final >= 50) THEN         
 PRINT*, Name, CRM, ExmAvg, Final, '3'   
 Thirds = Thirds + 1            
ELSE                    
 PRINT*, Name, CRM, ExmAvg, Final, 'F'   
 Fails = Fails + 1             
END IF                   
 

   
This saves time because Fortran stops checking as soon as it finds a true logical expression. So if 
Final >= 75 is true, it won't bother to check further. The onus rests on you therefore to code the 
construct correctly, so that only one of the logical expressions is true. 
Note also how indentation makes the structure easier to follow. 

The IF construct in general 
   
A more general form of the IF construct is:  

   
IF (logical-expr1) THEN 
        block1 
  ELSE IF (logical-expr2) THEN 
         block2 
  ELSE IF (logical-expr3) THEN 
         block3 
  ... 
  ELSE 
         blockE 
  END IF 
 

   
If logical-expr1 is true the statements in block1 are executed, and control passes to the next 
statement after END IF. If logical-expr1 is false, logical-expr2 is evaluated. If it is true the 
statements in block2 are executed, followed by the next statement after END IF. If none of the 
logical expressions is true, the statements in blockE are executed. Clearly, the logical expressions 
should be arranged so that only one of them can be true at a time. 
There may be any number of ELSE IFs (or none at all), but there may be no more than one ELSE. 
An IF construct may be optionally named as an aid to the reader (usually to clarify complicated 
nesting), e.g. 

   
[GRADE:] IF (Final >= 50) THEN 
      PRINT*, 'Pass' 
     ELSE [GRADE] 
      PRINT*, 'Fail' 
     END IF [GRADE] 
 

   
An ELSE or ELSE IF block may only be named if the corresponding IF and END IF blocks are 
named, and must be given the same name. The name must be a valid and unique Fortran name.  
Note that nothing may follow the keyword THEN on the first line of the construct. 
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Nested IFs 
   
When IF constructs are nested, the positioning of the END IFs is crucial, as this determines to 
which IFs the ELSE IFs belong. An ELSE IF or ELSE belongs to the most recently opened IF 
which has not yet been closed. To illustrate, consider once again programming the solution of the 
ubiquitous quadratic equation, ax 2 + bx + c = 0. It is necessary to check if a = 0, to prevent a 
division by zero: 

   
Disc = B * B - 4 * A * C 
Outer: IF (A /= 0) THEN          
     Inner: IF (Disc < 0) THEN           
         PRINT*, 'Complex roots'       
        ELSE Inner                 
         X1 = (-B + SQRT( Disc )) / (2 * A)  
         X2 = (-B - SQRT( Disc )) / (2 * A)  
        END IF Inner              
    END IF Outer              
 

   
What will happen if the END IF Inner is moved up 3 lines as shown below?  

   
Outer: IF (A /= 0) THEN          
     Inner: IF (Disc < 0) THEN           
         PRINT*, 'Complex roots'       
        END IF Inner  ! Wrong place now! 
        ELSE Inner                 
         X1 = (-B + SQRT( Disc )) / (2 * A)  
         X2 = (-B - SQRT( Disc )) / (2 * A)  
    END IF Outer              
 

   
Well, the compiler will object because of a clash of names: ELSE Inner cannot appear after END 
IF Inner closes the Inner IF. However, if all the names are omitted, the segment will 
compile, but will make a division by zero certain if a = 0, since the ELSE will now belong to the 
first IF---try it. 
Nesting may extend to any depth; indentation and/or naming should be carefully used in such cases 
to make the logic clearer. 

DOs and IFs 
   
A DO loop may contain an IF construct, and vice versa.  The basic rule is that if a construct begins 
inside another construct, it must also end inside that construct. The following is therefore illegal:  

   
DO I = 1, 10  
 IF (I > 5) THEN 
  ... 
 END DO     ! Illegal: IF must end before DO 
END IF 
 
and so is this: 
IF ( ... ) THEN 
 DO I = 1, 10 
  ... 
 END IF     ! Illegal: DO must end before IF 
END DO 
 

5.2. Logical Type 
   

So far four of the five intrinsic data types have been discussed: integer, real, character and 
complex. The time has come to discuss the fourth type: logical. 
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Logical constants 
   
The default kind of logical type has two literal constants: .TRUE. and .FALSE. (upper- or 
lowercase). The value of the default kind parameter is returned in the usual way, by KIND( 
.TRUE. ) 
Your compiler may have non-default logical kinds; these may be used, for example, for storing 
logical arrays more compactly. 

Logical expressions 
   
We have seen logical expressions briefly in Chapter 3. They can be formed in two ways: from 
numeric expressions in combination with the six relational operators, or from other logical 
expressions in combination with logical variables and the five logical operators. 
The relational operators and their meanings, with some examples, are as follows: 

   
Relational Operator Meaning Example   
.LT. or < less than A < 1e-5 
.LE. or <= less than or equal B ** 2 .LE. 4 * A * C 
.EQ. or == equal B ** 2 == 4 * A * C 
.NE. or /= not equal A /= 0  
.GT. or > greater than B ** 2 - 4 * A * C > 0 
.GE. or >= greater than or equal X >= 0 

 
 

Logical operators 
   
Fortran 90 has five logical operators, which operate on logical expressions: 

   
Logical Operator Precedence Meaning   
.NOT. 1 logical negation  
.AND. 2 logical intersection 
.OR. 3 logical union  
.EQV. and .NEQV. 4 logical equivalence and non-equivalence  
The following "truth table" shows the effects of these operators on the logical expressions lex1 and 
lex2 (T = true; F = false): 

   
lex1 lex2 .NOT. lex1 lex1 .AND. lex2 lex1 .OR. lex2 lex1 .EQV. lex2 lex1 .NEQV. 
lex2  
T T F T T T F 
T F F F T F T 
F T T F T F T 
F F T F F T F 
The order of precedence, shown above, may be superseded with parentheses, which always have the 
highest precedence. 
Examples: 

   
(B * B == 4 * A * C) .AND. (A /= 0)   
(Final >= 60) .AND. (Final < 70) 
(A /= 0) .or. (B /= 0) .or. (C /= 0) 
.not. ((A /= 0) .and. (B == 0) .and. (C == 0)) 
 

   
Incidentally, the last two expressions are equivalent, and are false only when A = B = C = 0---it 
makes you think, doesn't it? 
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Logical variables 
   
A variable may be declared with logical type in a LOGICAL statement. Logical constants or 
expressions may be assigned to logical variables: 
 
Figure 5.1   Switching circuits  

 
   
LOGICAL L1, L2, L3, L4, L5 
REAL A, B, C 
... 
L1 = .TRUE. 
L2 = B * B - 4 * A * C >= 0 
L3 = A == 0 
L4 = L1 .and. .not. L2 .or. L3 
L5 = (L1 .and. (.not. L2)) .or. L3 
 

   
(The precedence rules make L4 and L5 logically equivalent.) 
The truth values of logical variables are represented by T and F in list-directed I/O. 

Simulation of a switching circuit 
   
In the following program segment the logical variables S1 and S2 represent the state of two 
switches (ON = true; OFF = false) and L represents the state of a light. The program simulates the 
circuits in Figure 5.1 where the switches are arranged either in series or parallel. 

   
LOGICAL L, S1, S2 
READ*, S1, S2 
L = S1 .and. S2    ! series 
!L = S1 .or. S2    ! parallel 
PRINT*, L 
 

   
When the switches are in series, the light will be on only if both switches are on. This situation is 
represented by S1.and.S2 
When the switches are in parallel, the light will be on if one or both of the switches is on. This is 
represented by S1.or.S2 

Bit manipulation functions 
   

Some programming languages, such as Pascal and C, have operators, called bitwise 
operators, which operate directly on the bits of their operands. These are usually discussed 
in the context of logical (or Boolean) variables. In Fortran 90 their counterparts are the bit 
manipulation intrinsic functions which operate on the bits of their integer arguments. These 
are described in Appendix C. 

5.3. The CASE Construct 
   
The CASE construct is similar to IF. It allows selection between a number of situations or cases, 
based on a selector. In such cases it is more convenient than IF. Consider the following program 
segment: 
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CHARACTER CH 
 
DO 
 READ*, CH 
 PRINT*, ICHAR( CH ) 
 IF (CH == '@') EXIT 
 
 IF (CH >= 'A' .and. CH <= 'Z'.or. CH >= 'a' .and. CH <= 'z') THEN 
 SELECT CASE (CH)          
   CASE ('A', 'E', 'I', 'O', 'U', 'a', 'e', 'i', 'o', 'u')  
    PRINT*, 'Vowel'         
   CASE DEFAULT           
    PRINT*, 'Consonant'  
  END SELECT             
 ELSE 
  PRINT*, 'Something else' 
 END IF 
 
END DO 
 

   
It decides whether a character is a vowel, consonant, or something else. It stops when the symbol @/ 
is read. This could be programmed entirely with IF, but would produce a lot more code which 
would be harder to read (try it).  
The general form of CASE is  

   
SELECT CASE (expr) 
         CASE (selector1) 
                 block1 
         CASE (selector2) 
                 block2 
         [CASE DEFAULT 
                 blockD] 
END SELECT 
 

   
where expr must be integer, character or logical. If it evaluates to a particular selector, that block is 
executed, otherwise CASE DEFAULT is selected. CASE DEFAULT is optional, but there may be 
only one. It does not necessarily have to be the last clause of the CASE construct. 
The general form of the selector is a list of non-overlapping values and ranges, of the same type as 
expr, enclosed in parentheses, e.g. 

   
CASE( 'a':'h', 'i':'n', 'o':'z', '_') 
 

   
Note that the colon may be used to specify a range of values. If the upper bound of a range is absent, 
the CASE is selected if expr evaluates to a value that is greater than or equal to the lower bound, and 
vice versa.  
Parts of the CASE construct may be named in the same way as the IF construct. 
The selection of grades in the amended Final_Mark program of Section 5.1 can also be 
programmed with CASE if the mark Final is converted to integer type: 

   
SELECT CASE ( INT(Final) )          
 CASE (75:)                 
  PRINT*, Name, CRM, ExmAvg, Final, '1'   
  Firsts = Firsts + 1            
 CASE (70:74)                
  PRINT*, Name, CRM, ExmAvg, Final, '2+'  
  UpSeconds = UpSeconds + 1         
 CASE (60:69)                
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  PRINT*, Name, CRM, ExmAvg, Final, '2-'  
  LowSeconds = LowSeconds + 1        
 CASE (50:59)                
  PRINT*, Name, CRM, ExmAvg, Final, '3'   
  Thirds = Thirds + 1            
 CASE DEFAULT                
  PRINT*, Name, CRM, ExmAvg, Final, 'F'   
  Fails = Fails + 1             
END SELECT                  
 

   
There are times when CASE is more efficient than IF, since only one expression expr needs to be 
evaluated. 

5.4. The GO TO Statement 
   
It would be difficult to overestimate the damage done to languages like Fortran and Basic by the 
indiscriminate and thoughtless use of the GOTO statement. Proponents of the classically more 
structured languages, like Pascal and C, regard it as the programmer's four-letter word. (I once heard 
a particularly caustic critic ask why Fortran didn't have a COME FROM statement!) 
GO TO is an unconditional branch, and has the form 
GO TO label 

where label is a statement label: a number in the range 1–99999 preceding a statement on the same 
line. Control passes unconditionally to the labelled statement. E.g. 

   
GO TO 99 
X = 67.8 
99 Y = -1 
 

   
The statement X = 67.8 is never executed, perhaps causing a ship to sink, an airplane to crash, or 
a shuttle launch to abort. 
Novices may ask why GO TO is ever needed. Its use goes back to the bad old days when older 
versions of Fortran lacked the block IF construct, and had to make do with the simple IF statement. 
Consider the following (clear) segment of code (L1 and L2 are two defined logical variables): 

   
IF (L1) THEN 
 I = 1 
 J = 2 
ELSE IF (L2) THEN 
 I = 2 
 J = 3 
ELSE 
 I = 3 
 J = 4 
END IF 
 

   
In the absence of the IF construct this must be coded as the following tangle of "spaghetti": 

   
  IF (.NOT.L1) GOTO 10 
   I = 1 
   J = 2 
   GOTO 30 
10 IF (.NOT.L2) GOTO 20 
   I = 2 
   J = 3 
   GOTO 30 
20 I = 3 
   J = 4 
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30 CONTINUE    ! Dummy statement - does nothing 
 

   
Need we say more? except that GOTO should never be used—it will not be found in any examples in 
this book. It is mentioned here purely for historical and pedagogical reasons. 

Chapter 5 Summary 

• The IF construct allows for the conditional execution of blocks of statements. 
• The IF statement allows for the conditional execution of a single statement. 
• The IF construct may have any number of ELSE IF clauses, but no more than one ELSE 

clause. 
• The IF construct may be named. 
• IF constructs may be nested. 
• Logical constants, variables and expressions can only have one of two values: .TRUE. or 

.FALSE. 
• Logical expressions may be formed from numeric expressions with relational operators <, <=, 

etc. 
• The logical operators (.NOT., .AND., etc.) may be used to form more complex logical 

expressions from other logical expressions and variables. 
• Fortran has bit manipulation functions which operate directly on the bits representing integers. 
• The CASE construct may be used to select a particular action. 
• The GOTO statement branches unconditionally, and should be avoided at all costs. 

Chapter 5 Exercises 
   

5.1      Write a program which reads two numbers (which may be equal) and writes out the larger 
one with a suitable message, or if they are equal, writes out a message to that effect.  
5.2      Write a structure plan and program for the following problem: read 10 integers and write out 
how many of them are positive, negative or zero. Write the program with an IF construct, and then 
rewrite it using a CASE construct. 
5.3      Design an algorithm (draw the flowchart or structure plan) for a machine which must give the 
correct amount of change from a $10 note for any purchase costing less than $10. The plan must 
specify the number and type of all notes and coins in the change, and should in all cases give as few 
notes and coins as possible. (Define your own denominations if necessary.) 
5.4      Write a program for the general solution of the quadratic equation ax 2 + bx + c = 0. 
Use the structure plan developed in Chapter 4. Your program should be able to handle all possible 
values of the data a, b, and c. Try it out on the following values of a, b and c:  
(a) 1, 1, 1 (complex roots);  
(b) 2, 4, 2 (equal roots of –1.0);  
(c) 2, 2, –12 (roots of 2.0 and –3.0). 
Rewrite your program with complex types so that it can handle complex roots, as well as all the 
other special cases. 
5.5      Develop a structure plan for the solution of two simultaneous linear equations (i.e. two 
straight lines). Your algorithm must be able to handle all possible situations, viz. lines which are 
intersecting, parallel, or co-incident. Write a program to implement your algorithm, and test it on 
some equations for which you know the solutions, e.g. 
x + y= 3  
2x–y = 3  
(x = 2, y = 1). Hint: begin by deriving an algebraic formula for the solution of the system  
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ax + by  =  c 
dx + ey  =  f 
The program should read the coefficients a, b, c, d, e and f.  
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Chapter 6 Introduction 
   
In Chapter 3 we introduced the powerful DO construct to execute a block of statements repeatedly. A 
situation where the number of repetitions may be determined in advance is sometimes called 
deterministic repetition. However, it often happens that the condition to end a repeat structure (or 
loop) is only satisfied during the execution loop of the loop itself. This type of repeat structure is 
called non-deterministic. Both of these (logically quite different) situations are programmed with the 
DO construct in Fortran 90.  
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6.1. Deterministic Repetition 
In this section we will see how to generalize the DO construct after first considering some more 
examples.  

Factorials! 
   
The variable in a DO loop may be used in any expression inside the loop, although its value may not 
be changed explicitly, (e.g. by an assignment statement as a quick and dirty way of terminating the 
loop early). The following program prints a list of n and n! where 
n! = 1 x 2 x 3 x ... x (n-1) x n. 
Do you trust the real or integer output, and why? 

   
INTEGER ::  NFACT = 1 
INTEGER N 
REAL    ::  XFACT = 1 
 
DO N = 1, 20 
  NFACT = NFACT * N 
  XFACT = XFACT * N 
  PRINT*, N, NFACT, XFACT 
END DO 

Binomial coefficient 
   
This is widely used in statistics. The number of ways of choosing r objects out of n without regard to 

order is given by 
   
 

   
   

 
   

If the form involving factorials is used, the numbers can get 
very big, causing the cycling problem shown in the previous example. But using the right-most 
expression above is much more efficient: 

   
INTEGER :: BIN = 1 
INTEGER K, N, R 
 
PRINT*, 'Give values for N and R' 
READ*, N, R 
 
DO K = 1, R 
  BIN = BIN * (N - K + 1) / K 
END DO 
 
PRINT*, N, 'c', R, '=', BIN 

Limit of a sequence 
   
DO loops are ideal for computing successive members of a sequence. This example also highlights a 
problem that sometimes occurs when computing a limit. Consider the sequence 

   
 
   

   
 

   
where a is any constant, and n! is the factorial function defined above. The question is: what is the 

limit of this sequence as n gets indefinitely large? Let's take the case a = 10. If we try to compute xn  
directly we could get into trouble, because n! gets large very rapidly as n increases, and cycling or 
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overflow could occur. However, the situation is neatly transformed if we spot that xn  is related to 
xn−1 as follows:  

   
 

   
   

 
   
There are no numerical problems now. The following program computes xn  for a = 10, and 
increasing values of n, and prints it for every tenth value of n:  

   
REAL :: X = 1 
REAL :: A = 10 
INTEGER N 
 
DO N = 1, 100 
  X = A * X / N 
  IF (MOD( N, 10 ) == 0) PRINT*, N, X 
END DO  

Complex transfer function 
   
The response (output) of a linear system, which may be thought of as a "black box", is characterized 
in electrical engineering by its transfer function. An input signal with a given angular frequency (ω 
radians/s) is applied at one end of the box. The output from the other end is then given by the input 
multiplied by the absolute value of the transfer function, with its phase shifted by the phase angle of 
the transfer function.  
Suppose a servomechanism is characterized by the transfer function  

   
 

   
   

 
   
where i is the unit imaginary number −1 (j in electrical engineering) and K is an amplification 
factor. T(iω ) is a complex number. If its real and imaginary parts (returned by REAL and AIMAG) 

are a and b respectively then its absolute value is a b2 2+  and its phase angle φ is given by arctan 
b/a. If the ATAN2 intrinsic function is used, the angle returned will be in the range–π to π, so that 
the correct quadrant is given (which is not the case for ATAN). 
The program below shows how the servomechanism responds to different input frequencies ω. This 
information is necessary in the design of stable feedback control devices. The initial input frequency 
is 0.02 radians/sec. This is multiplied by a factor (Fact) of 1.25 each time for a given number of 
steps. The amplification factor K is 900. The phase shift φ of the output is given in degrees.  

Note that a named complex constant (i) is used for −1. The complex variable iom is formed from 
i and Omega purely for notational convenience. 

   
IMPLICIT NONE 
 
INTEGER               N                 ! counter           
INTEGER            :: Steps             ! iteration count   
REAL                  A, B              ! Re(T), Im(T)      
REAL               :: Fact  = 1.25      ! scaling factor    
REAL               :: K     = 900       ! amplification     
REAL               :: Omega = 0.02      ! angular frequency 
REAL                  Phase             ! phase angle       
REAL, PARAMETER    :: Pi    = 3.1415927 
COMPLEX, PARAMETER :: i     = (0, 1)    ! sqrt(-1) 
COMPLEX               iom               ! sqrt(-1) * omega 
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COMPLEX               T                 ! complex transfer function 
 
READ*, Steps 
PRINT 20  
20  FORMAT( ' Omega', T12, 'Real T', T27, 'Im T', T42, 'Abs T', & 
                   T62, 'Phase' ) 
PRINT* 
 
DO N = 0, Steps 
  iom = i * Omega   
  T = (K*(1 + 0.4*iom)*(1 + 0.2*iom)) /                       & 
      (iom*(1 + 2.5*iom)*(1 + 1.43*iom)*(1 + 0.02*iom)**2) 
  A = REAL( T ) 
  B = AIMAG( T ) 
  Phase = ATAN2( B, A ) * 180 / Pi          ! phase degrees 
  PRINT 10, Omega, A, B, ABS( T ), Phase 
10 FORMAT( F7.3, T10, E11.4, T25, E11.4, T40, E11.4, T60, F7.2) 
  Omega = Omega * Fact 
END DO 
 Sample output: 
  Omega    Real T         Im T           Abs T               Phase 
                                                                   
  0.020  -0.3024E+04    -0.4483E+05     0.4493E+05          -93.86 
  0.025  -0.3018E+04    -0.3578E+05     0.3591E+05          -94.82 
  ... 
 
120.371  -0.1651E-01     0.1830E-01     0.2465E-01          132.07 
150.463  -0.7512E-02     0.1100E-01     0.1332E-01          124.33 
 

   
If you run the program you will see how the input signal is amplified at first, but is then attenuated. 
The phase shift starts at about –90° and moves gradually to about –180°, after which it swings 
backwards and forwards across the real axis as the input frequency gets larger. 

6.2. The DO in General 
   
Try the following program segments (output is shown after each one): 

   
DO I = 2, 7, 2 
  WRITE( *, '(I3)', ADVANCE = 'NO' ) I 
END DO 
 

   
Output: 2  4  6 

   
DO I = 5, 4 
  WRITE( *, '(I3)', ADVANCE = 'NO' ) I 
END DO                                 
 

   
Output: (nothing) 

   
DO I = 5, 1, -1 
  WRITE( *, '(I3)', ADVANCE = 'NO' ) I 
END DO 
 

   
Output:  5  4  3  2  1 

   
 
DO I = 6, 1, -2 
  WRITE( *, '(I3)', ADVANCE = 'NO' ) I 
END DO 
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Output:  6  4  2 
The general form of the DO construct that we shall use is 
[name:] DO variable = expr1, expr2 [, expr3] 

       block 
    END DO [name] 

   
where variable   (the DO variable) is an integer variable, expr1, expr2, and expr3 are any valid 
integer expressions, and name is the optional construct name. expr3 is optional, with a default value 
of 1. The expressions expr1, expr2, and expr3 are called the DO parameters. 
The DO variable is initialized to expr1 before a decision is made whether or not to loop, according to 
the formula below. On completion of each loop, expr3 is added to the DO variable, again before 
deciding whether or not to loop. It follows that after completion of the DO construct, the DO variable 
will not have the value it had during the last execution of the block. E.g. in the first segment above, 
the final value of I is 8.  
The number of iterations of a DO construct is given by the formula 
M AX ((expr2–expr1+expr3) / expr3, 0) 
where MAX is the intrinsic function returning the maximum of its arguments. Since MAX returns a 
value which has the same type as its arguments, the value returned in this case will be the value of 
the expression (truncated if necessary), or zero, whichever is larger. 
This formula is called the iteration count or the trip count of the DO loop. You should verify that the 
iteration counts for the four segments above are 3, 0, 5 and 3 respectively. 
Note that it is possible for the DO block not to be executed at all. This is called a zero-trip loop, and 
will occur whenever the first argument of MAX in the formula evaluates to a non-positive quantity. 
DO I = J, K, L 
• If L is positive, the block is executed with I starting at J and increased by L every time until it 

has been executed for the greatest value of I not exceeding K. 
• If L > 0 and J > K the block is not executed at all (zero-trip count). 
• If L is negative, the block is executed with I starting at J and decreased by |L| every time until it 

has been executed for the smallest value of I not less than K. 
• If L < 0 and J < K the block is not executed at all (zero-trip-count). 
Fig. 6.1    DO Parameters  
 

   
The formula for the iteration count is evaluated before the block is executed for the first time. Even 
if the values of the DO parameters are subsequently changed inside the block, this will not affect the 
iteration count.  
These rules are summarized in Figure 6.1. 
The DO variable and parameters may be real. This feature, however, has been declared obsolescent 
(i.e. may be removed entirely from the next standard), so you should try very hard not to use it if you 
are an old Fortran addict. It gives rise to all sorts of nasty rounding errors. 

6.3. DO with Non-integer Increments 
   
There are many situations in scientific and engineering computing when one wants to make non-
integer increments in a loop. Consider again the stone thrown vertically upwards in Chapter 2. 

Suppose it is launched at time t = 0  seconds, and we want to compute its position s(t) between 

times t t= 0 and t t+ 1 every dt seconds. These times are most unlikely to be integers. 
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( ) / .t t dt1 0 1− +

One way to solve this problem is to calculate our own iteration count for the problem. The number 

of intervals involved is ( )t t dt1 0−
. Since we want the result at each end of the interval between 

t0 and t1, we need to add 1 to this. The obvious value for our iteration count is therefore 
   

 
   

   
 

   
Now, since this must be an integer, do we truncate it with INT or round it with NINT? To answer 

this we must first decide what must happen if t t1 0−  is not an exact multiple of dt. Let's say we 

don't want calculations made outside our specified range. That rules out NINT. Suppose t0 0= , 

t1 5=  and dt = 0.4. Our iteration count is 12.5 exactly. Rounding up with NINT would give 13, 
with an unwanted calculation beyond t1. So INT must be used. 
However, this also has its problems. Because of rounding error the number of intervals 

( )t t dt1 0−
 could easily just fall short of a whole number (like 10/0.1 coming out as 99.9999 

instead of 100), so truncating would lose one loop. Fortran 90 has a neat solution to this problem. 
The new intrinsic function SPACING(X) returns the absolute spacing between SPACING values 
near X. So the most satisfactory answer is to add SPACING(dt) to the iteration count before 
truncating. 

The following program reads values for t0 (TStart), t1 (TEnd) and dt, and prints the iteration 
count (TRIPS) before computing and printing the stone's position every dt seconds. Note that t must 
be explicitly updated in the DO block now, since I is used purely as a counter. 

   
REAL, PARAMETER :: G = 9.8 
REAL               dT, S, T, TStart, TEnd 
REAL            :: U = 60 
INTEGER            I, TRIPS 
 
READ*, TStart, TEnd, dT 
TRIPS = INT( (TEnd - TStart) / dT + SPACING(dT) ) + 1 
PRINT*, TRIPS 
T = TStart 
 
DO I = 1, TRIPS 
  S = U * T - G / 2 * T * T 
  PRINT*, I, T, S 
  T = T + dT 
END DO               
 

   
A further interesting problem arises. Suppose we still want to compute s(t) every dt seconds, but 
only want to print it every h seconds—this is a common problem in numerical analysis, where the 
step-length dt might be very small. Given that we want output on the first iteration, we therefore 
have to skip the next h/dt iterations before printing again. Because the DO variable I starts at 1 this 
means that we want output whenever (I-1) is an exact multiple of h/dt. This can be achieved by 
replacing the PRINT above with 

   
IF (MOD(I-1, INT( H / dT + SPACING(dT) )) == 0) PRINT*, I, T, S 
 

   
where the same allowance has been made for rounding error, and the value of h must be input. 
Note that the loop in this problem is indeed deterministic— we could determine our own iteration 
count in advance. Although this is the recommended way of handling non-integer increments, there 
is another solution which is mentioned later when we look at non-deterministic  
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6.4. Nested DOs: Loan Repayments 
   
If a regular fixed payment P is made n times a year to repay a loan of amount A over a period of k 
years, where the nominal annual interest rate is r, P is given by  

   
 
   

   
 

   
The next program uses nested DOs to print a table of the repayments on a loan of $1000 over 15, 20 
or 25 years, at interest rates that vary from 10% to 20% per annum. P is directly proportional to A in 
Equation 6.1. Therefore the repayments on a loan of any amount may be found from the table 
generated by the program, by simple proportion. The WRITE statements used to make the output 
look neater are explained in Chapter 10. You can probably figure out how they work. 

   
IMPLICIT NONE 
 
INTEGER     I              ! counter 
INTEGER  :: N = 12         ! number of payments per year 
INTEGER     K              ! repayment period (yrs) 
INTEGER     TRIPS          ! iteration count 
 
REAL     :: A = 1000       ! principal 
REAL        P              ! payment 
REAL        R              ! interest rate 
REAL        R0, R1, RINC   ! lowest, highest interest and increment 
 
READ*, R0, R1, RINC 
TRIPS = INT( (R1 - R0) / RINC + RINC/2 ) + 1 
R = R0 
 
PRINT*, "Rate      15 yrs    20 yrs    25 yrs" 
PRINT* 
 
DO I = 1, TRIPS 
  WRITE( *, '(F5.2, "%")', ADVANCE = 'NO' ) 100 * R 
 
  DO K = 15, 25, 5 
    P = R/N * A * (1 + R/N) ** (N * K) / ((1 + R/N) ** (N * K) - 1) 
    WRITE( *, '(F10.2)', ADVANCE = 'NO' ) P 
  END DO 
 
  PRINT*                   ! get a new line 
  R = R + RINC 
END DO 
 

   
Some sample output (with input 0.1, 0.2, 0.01):  

   
Rate      15 yrs    20 yrs    25 yrs   
                                        
10.00%     10.75      9.65      9.09    
11.00%     11.37     10.32      9.80    
 ... 
   
20.00%     17.56     16.99     16.78    
 

   
Clearly, you should not use the same DO variables in nested loops (the compiler fortunately won't 
allow this). If the level of nesting is deeper it will probably help to name the Dos. 
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You can see why real DO variables and parameters should be avoided by running this program with 
the outer DO statement replaced by 

   
DO R = R0, R1, RINC 
 

   
and the statement R = R + RINC omitted. Rounding error makes the iteration count too small. 

6.5. Non-deterministic Loops 
   
Deterministic loops all rely on the fact that you can work out exactly what the iteration count is 
before the loop starts. But in the next example, there is no way in principle of working out the 
iteration count, so a different form of the DO construct is needed. 

A guessing game 
   
The problem is easy to state. The program "thinks" of an integer between 1 and 10 (i.e. generates 
one at random). You have to guess it. If your guess is too high or too low, the program must say so. 
If your guess is correct, a message of congratulations must be displayed.  
A little more thought is required here, so a structure plan might be helpful:   
 1. Generate random integer 
 2. Ask user (assumed male) for guess 
 3. Repeat  until guess is correct:  

  If guess  is too low then 
    Tell him it is too low 
  Otherwise 
    Tell him it is too high 
  Ask him for another guess 

 4. Polite congratulations 
 5. Stop. 

   
Before we look at the whole program let's see how the random integer is generated. The statement 

   
CALL RANDOM_NUMBER( R ) 
 

   
first generates a random real R in the range 0 1≤ <R , i.e. [0, 1). 10 * R will be in the range [0, 
10), and 10 * R + 1 will be in the range [1, 11), i.e. between 1.000000 and 10.999999 inclusive. 
Using INT on this will then give an integer in the range 1 to 10, as required.  
If you want to play more than once, with different random numbers each time, you will need to "re-
seed" the random number generator in a specific way each time you run the program. The first time 
you run the program, supply any integer you like for the seed. But on subsequent occasions you 
should use the new seed printed at the end of the previous game. Detailed discussion of this process 
is left to Chapter 14.  

   
INTEGER                   FtnNum, MyGuess 
INTEGER, DIMENSION(1) ::  Seed 
REAL                      R 
 
WRITE( *, '("Seed: ")', ADVANCE = 'NO' )  
READ*, Seed(1)                ! user supplies seed 
CALL RANDOM_SEED( PUT=Seed)   ! seeds the random number generator 
CALL RANDOM_NUMBER( R ) 
FtnNum = INT( 10 * R + 1) 
WRITE( *, '("Your guess: ")', ADVANCE = 'NO' )  
READ*, MyGuess                                  
 
DO 
  IF (MyGuess == FtnNum) EXIT 
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    IF (MyGuess > FtnNum) THEN 
      PRINT*, 'Too high.  Try again' 
    ELSE 
      PRINT*, 'Too low.  Try again' 
    END IF 
    WRITE( *, '("Your guess: ")', ADVANCE = 'NO' )  
    READ*, MyGuess 
END DO 
 
PRINT*, 'BINGO!  Well done!' 
CALL RANDOM_SEED( GET=Seed)   ! get the new seed for another game 
PRINT* 
PRINT*, 'New seed: ', Seed(1) 
 

   
Try it out a few times. Note that the DO loop (which now has no variables or parameters) repeats as 
long as MyGuess is not equal to FtnNum. There is no way of knowing in principle how many 
loops will be needed before they are equal, and so this new form of the DO construct is essential 
here. In this case looping terminates when the statement EXIT is executed. The problem is truly 
non-deterministic. 
On reflection, you might feel the coding is a little wasteful. The section  

   
WRITE( *, '("Your guess: ")', ADVANCE = 'NO' )  
READ*, MyGuess 
 

   
has to appear twice. Once, to start the loop going (or MyGuess would be undefined), and a second 
time in the loop itself. Change the program as indicated below and try running it (only the section 
with changes is reproduced): 

   
FtnNum = INT( 10 * R + 1) 
! remove two lines  
 
DO 
    WRITE( *, '("Your guess: ")', ADVANCE = 'NO' ) ! move up 
    READ*, MyGuess                                 ! move up 
    IF (MyGuess > FtnNum) THEN                               
      PRINT*, 'Too high.  Try again'                         
    ELSE IF (MyGuess < FtnNum) THEN      ! ELSE IF now       
      PRINT*, 'Too low.  Try again'                          
    ELSE                                                     
      PRINT*, 'Well done!'               ! congrats here now 
    END IF                                                   
  IF (MyGuess == FtnNum) EXIT                    ! move down 
END DO 
 
! remove congrats 
CALL RANDOM_SEED( GET=Seed)   ! get the new seed for another game 
 

   
The equivalent structure plan for the new version is: 
 1. Generate random integer 
 2. Repeat: 

   Ask user for guess 
   If guess is too low 
     Tell him it is too low 
   Otherwise if guess is too high 
     Tell him it is too high 
   Otherwise 
     Polite congratulations 
Until guess is correct 
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 3. Stop. 
   
The essential difference is that the EXIT occurs at the top of the DO block in the first version, but at 
the end of the block in the second version. There is a more subtle difference, however: in the first 
case the condition for exiting is tested at the top; in the second case it is only tested at the end. 

DO: conditional EXIT 
   
We have seen two further versions of the DO construct: 

   
DO   
 IF (logical-expr) EXIT 
   block 
END DO 
 

   
and 

   
DO     
   block 
 IF (logical-expr) EXIT 
END DO  
 

   
(both versions may be named). 
The EXIT statement provides a means to exit from an otherwise endless loop. It may in fact go 
anywhere in the loop. However, it is best for it to go either at the top or at the end; the reader does 
not then have to search through the loop to find the exit condition. 
Some purists might argue that the EXIT should always be at the top of such a non-deterministic 
loop, so that it is clear to a reader how a loop will end when she first encounters it. The while-do 
construct of languages like Pascal lends itself more readily to this convention. The way Fortran 90 is 
designed makes it more natural to put the EXIT at the end. However, I am sure you are old enough 
to decide for yourself!  
There is one situation in which the EXIT must be at the top of the loop, and this is when a zero trip 
count is logically possible. An example is the original form of the guessing game above: if the user 
guesses the number correctly first time, there should be no executions of the DO block.  

DO WHILE 
   
A DO construct may be headed with a DO WHILE statement: 

   
DO  WHILE (logical-expr) 
              block 
   END DO 
 

   
This is logically equivalent to 

   
DO   
              IF (.NOT.logical-expr) EXIT 
                          block 
  END DO 
 

   
The DO WHILE is a very compelling construction since the condition to repeat is stated clearly at 
the top of the loop. It may however involve optimization penalties under certain circumstances. 
There are many examples of its usage later.  
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DO: variations which are not recommended 
   
The EXIT statement may also be used in a DO construct with a DO variable and parameters: 

   
DO I = 1, N 
  ... 
  IF (I == J) EXIT 
  ... 
END DO 
 

   
This form is most strongly not recommended! If you are tempted to try this in order to get out of a 
tricky situation it probably means you have not thought through the logic clearly enough. You must 
be able to state all the possible conditions for an exit unambiguously either at the top or the bottom 
of the loop. Some examples where this situation arises are given below. 
The statement 

   
CYCLE [name] 
 

   
transfers control to the END DO statement of the corresponding construct, so if further iterations are 
still to be carried out the next one is initiated. Its use is not recommended—it makes the logic more 
difficult to see. 
The DO construct may make use of a statement label, as follows: 

   
DO 100 I = 1, N 
... 
100  CONTINUE 
 

   
The CONTINUE is a dummy statement which does nothing. The construct may also end with a 
labelled END DO. This form is not recommended—the labels are not necessary and obscure the 
logic with redundant information. 

Doubling time of an investment 
   
Suppose we have invested some money which draws 10% interest per year, compounded. We would 
like to know how long it takes for the investment to double. More specifically, we want a statement 
of the account each year, until the balance has doubled. The English statement of the problem hints 
heavily that we should use a non-deterministic DO with the EXIT condition at the end of the loop. 
The structure plan and program for the problem are:  
 1. Start 
 2. Initialize balance, year, rate, interest 
 3. Write headings 
 4. Repeat   

   Update balance according to interest rate 
   Write year, interest, balance 
until balance exceeds twice original balance 

 5. Stop. 
   
   
IMPLICIT NONE 
INTEGER  Year 
REAL     Interest, New, Old, Rate 
 
PRINT*, 'Original balance:' 
READ*, Old 
Rate = 0.1 
New = Old               ! keep a copy of the original balance 
Year = 0 
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PRINT*, 'Year   Interest        Balance' 
PRINT* 
 
DO 
    Interest = Rate * New 
    New = New + Interest 
    Year = Year + 1 
    PRINT*, Year, Interest, New 
  IF (New > 2 * Old) EXIT 
END DO 
 

   
The condition New > 2 * Old is checked each time before another iteration. Repetition occurs 
only if the condition is true. The DO block must be executed at least once, since you must invest 
your money for at least a year for anything to happen. Consequently, the EXIT must be at the end of 
the DO. The output looks like this (for an opening balance of $1000): 

 
Year Interest Balance 
   
1 1.0000000E+02 1.1000000E+03  
2 1.1000000E+02 1.2100000E+03  
...   
7 1.7715611E+02 1.9487172E+03  
8 1.9487172E+02 2.1435889E+03  
Note that when the last iteration has been completed, the condition to EXIT is true for the first time, 
since the new balance ($2143.59) is more than $2000. Note also that a deterministic DO cannot be 
used here because we don't know how many iterations are going to be needed until after the program 
has run (although in this example perhaps you could work out in advance how many iterations are 
needed?).  
If you want to write the new balance only while it is less than $2000, all that has to be done is to 
move 

   
PRINT*, Year, Interest, New 
 

   
until it is the first statement in the DO loop (try it). Note that the starting balance of zero is written 
now.  
The EXIT condition can be placed at the top of the original DO block if it is rephrased as follows: 

   
IF (New < 2 * Old) EXIT 
 

   
Note that > has been replaced by <. Try this also. Either form is acceptable, although the purists 
might prefer the version with EXIT at the top. This condition is immediately apparent to anyone 
reading the program; you do not have to search for the end of the loop to find the condition to exit.  

 
 
Prime numbers 

   
Many people are obsessed with prime numbers, and most books on programming have to include a 
program to test if a given number is prime. So here's mine.  
A number is prime if it is not an exact multiple of any other number except itself and 1, i.e. if it has 
no factors except itself and 1. The easiest plan of attack then is as follows. Suppose P is the number 
to be tested. See if any numbers N can be found that divide into P without remainder. If there are 
none, P is prime. Which numbers N should we try? Well, we can speed things up by restricting P to 
odd numbers, so we only have to try odd divisors N. When do we stop testing? When N = P? No, we 
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can stop a lot sooner. In fact, we can stop once N reaches P , since if there is a factor greater than 

P there must be a corresponding one less than P , which we would have found. And where do 
we start? Well, since N = 1 will be a factor of any P, we should start at N = 3. The structure plan is 
as follows: 
 1. Read P 
 2. Initialize N to 3 
 3. Find remainder R when P is divided by N 

 4. Repeat until R = 0 or N ≥ P : 
   Increase N by 2 
   Find R when P is divided by N 

 5. If R ≠ 0  then 
 P is prime 
Else 
 P is not prime 

 6. Stop. 
   
Note that the exit condition is tested at the top of the loop because R might be zero the first time. 
Note also that there are two conditions under which the loop will stop. Consequently, an IF is 
required after completion of the loop to determine which condition stopped it. Here's the program: 

   
PROGRAM Prime 
! Tests if an odd integer > 3 is prime 
 
IMPLICIT NONE 
INTEGER ::  N = 3 
INTEGER     P, Rem 
 
PRINT*, 'Gimme an odd integer:' 
READ*, P 
Rem = MOD( P, N ) 
  
DO 
  IF (Rem == 0 .OR. N >= SQRT( REAL(P) )) EXIT 
    N = N + 2 
    Rem = MOD( P, N ) 
END DO 
 
IF (Rem /= 0) THEN 
  PRINT*, P, ' is prime' 
ELSE 
  PRINT*, P, ' is not prime' 
END IF 
 
END 
 

   
Try it out on the following: 4,058,879 (not prime), 193,707,721 (prime) and 2,147,483,647 (prime). 

If such things interest you, the largest prime number at the time of writing is 2 1756,839 − . It has 
227,832 digits and takes up about 7 pages of newsprint. Obviously this program cannot test such a 
large number, since it's greater than the largest integer which can be represented by a Fortran 
intrinsic type. Ways of testing such huge numbers for primality are described in D.E. Knuth, The Art 
of Computer Programming. Volume 2: Seminumerical Algorithms (Addison-Wesley,  1981) Knuth. 
The DO WHILE form of the DO construct would be very convenient to use here. Step 4 of the 
structure plan needs to be changed to 

4.  While R ≠ 0  and N P<  repeat: 
and the DO must be rephrased as 
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DO WHILE (Rem /= 0 .AND. N < SQRT( REAL(P) )) 
  N = N + 2 
  Rem = MOD( P, N ) 
END DO 
 

   
Note that the condition is the logical negation of the condition to exit as given originally. 

Reading an unknown amount of data 
   
The next program uses DO WHILE with a special feature of the general READ statement to read an 
unknown amount of data from a file DATA and to find their mean: 

   
REAL :: A, SUM 
INTEGER :: N = 0 
INTEGER :: IO = 0 
 
OPEN( 1, FILE = 'DATA' ) 
SUM = 0 
 
DO WHILE (IO == 0) 
  READ (1, *, IOSTAT = IO) A 
  IF (IO == 0) THEN 
    SUM = SUM + A 
    N = N + 1 
    PRINT*, A 
  END IF 
END DO 
 
PRINT*, "Mean:", SUM / N 
 

   
This is the crudest solution to the problem: the data must be supplied one value per line in the file. 
More elegant solutions will be given later. IOSTAT is a specifier which is set to zero if the READ 
succeeds or to a negative value if an end-of-file condition occurs during the READ. It is discussed 
more fully later. 

Taylor series for sine 
   
You may have wondered how a computer calculates functions such as sine and cosine. Really 
ancient computers actually used to look up tables entered in memory, but young and upwardly 
mobile ones are more cunning. Mathematically, it can be shown that sin x, for example, is the sum 
of an infinite series (called a Taylor series), as follows: 

   
 

   
   

 
   
We obviously can't compute the sum of an infinite series, but we can at least arrange to stop after the 
terms in the series are all less than some prescribed value, say 10 -6. It can be shown that we can 
always get a term less than some arbitrarily small number by going far enough in the Taylor series. 
As an exercise you should try to draw a flowchart or structure plan before studying the program 
below. The main idea is to construct each term in the series from the previous one, as described in 
the limit problem in Section 6.1. In constructing the denominator each time, use has been made of 
the fact that if k is any integer, 2k is even and 2k+1 is odd. So if k = 0 labels the first term (x), the 
second term (labelled by k = 1) can be obtained from the first term by multiplying it by 

   
 
   

   
 

   
Work out the first few terms by hand as a check. The program is as follows: 
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PROGRAM Taylor 
! Computes sine(x) from Taylor series 
 
INTEGER, PARAMETER :: Pi = 3.14159278 
 
INTEGER   :: K        = 1     ! term counter 
INTEGER   :: MaxTerms = 10    ! max number of terms 
 
REAL      :: Err      = 1e-6  ! max error allowed 
REAL         Sine             ! sum of series 
REAL         Term             ! general term in series 
REAL         X                ! angle in radians 
 
PRINT*, 'Angle in degrees?' 
READ*, X 
X = X * Pi / 180              ! convert to radians 
Term = X                      ! first term in series 
Sine = Term 
 
DO WHILE ((ABS( Term ) > Err) .and. (K <= MaxTerms)) 
  Term = - Term * X * X / (2 * K * (2 * K + 1)) 
  K = K + 1 
  Sine = Sine + Term 
END DO 
 
IF (ABS( Term ) > Err) THEN                  ! why did DO end? 
  PRINT*, 'Series did not converge' 
ELSE 
  PRINT*, 'After', K, 'terms Taylor series gives', Sine 
  PRINT*, 'Fortran 90 intrinsic function: ', SIN( X ) 
END IF 
 
END 
 

   
The DO WHILE may be replaced by 

   
DO  
  IF ((ABS( Term ) <=  Err) .or. (K > MaxTerms)) EXIT 
  ... 
END DO 
 

   
Note how the logical condition must be negated—it is now the condition to exit. 
DO WHILE or EXIT at the top of the loop is appropriate here since the initial term might be small 
enough, in which case k will still be 1. 
Note also that there are two conditions for terminating the loop. Consequently, an IF is required 
after the DO to establish which condition was satisfied. 
You may be tempted to use a DO with parameters and an EXIT to escape if Term gets small 
enough: 

   
DO I = 1, MaxTerms 
  IF (ABS( Term ) <=  Err) EXIT 
  ... 
END DO 
 

   
Although this works perfectly well, it is definitely not recommended (some programmers will 
definitely disagree!). The reasons are as follows. My objection is that all conditions for exit are not 
clear at the very top of the loop—after a cursory glance you might think it is a deterministic loop. 
But, you may argue, I am splitting hairs; after all, the second condition for exit is in the very next 
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line. But after a few months you might introduce further conditions later in the block. The trouble is 
that this innocent looking structure allows for ad-hoc amendments later—at which stage the 
programmer might easily lose track of what all the conditions for exit are. 
The principle is: all conditions for exit should be stated clearly in one place —at the top or the end of 
the loop. 

6.6. Taking Stock: Modelling a Population of Gnus 
   
Once you have mastered loops a great vista of interesting and solvable problems begins to unfold. 
One such problem is presented in this section. 
The wildebeest (gnu) population in the Kruger National Park, South Africa, declined from about 
14,000 in 1969 to 6,700 in 1975, giving rise to considerable concern (see Table 6.1). Mathematical 
modelling techniques were applied to this problem, as described in A.M. Starfield and A.L. Bleloch, 
Building Models for Conservation and Wildlife Management (MacMillan, 1986).  

The population in year k may be divided into four biologically distinct age groups: ck , the number 

of new-born calves; yk , the number of yearlings; tk, the number of two-year-olds; 
wk , the number 

of adults (older than two years). 
We can think of the population as a vector with four components, each measured annually (in 
January, when the females calve). The essence of the problem is to predict the next year's vector, 
given an initial population at some time. At this stage we turn to the game rangers, who tell us that 
yearlings do not produce young—this is the prerogative of the two-year-olds and adults. We thus 
have the equation modelling the dynamics of calves: 

   
 

   
   

 
   
where a and a' are the birth-rates (number of expected offspring per individual per year) for adults 
and two-year-olds respectively. It turns out that the best way to model yearling population dynamics 
is simply 

   
 

   
   

 
   
where b is the overall survival-rate for calves. Obviously this year's yearlings can only come from 
last year's calves, so b < 1.  
For the other two age groups life is fairly uncomplicated. Their members die of practically only one 
cause—lion attack. This is modelled as follows. It seems that lion are indiscriminate in their attacks 
on all groups except the calves. Therefore the number of yearlings taken by lion is in direct 
proportion to the fraction of yearlings in the total non-calf population, and so on. Of course the 
number taken in year k is also in proportion to the number of hunting lion in year k —call this 

number lk . So we can model the number of two-year-olds and adults with  
   

 
   

   
 

   
and 

   
 

   
   

 
   
where g is the lion kill-rate (number of gnu taken per lion per year).  



 74 

c y t w2 2 2 2 12617+ + + =

The order in which these equations are computed is important. wk + 1 and tk +1 must be 
computed before ck + 1.  
After consultation with game rangers, a is estimated as 0.45, and a' as 0.15 (Starfield and Bleloch). 
The lion kill-rate is between 2.5 and 4 (lion have other choices on their menu), and calf survival b is 
between 0.5 and 0.7.  
More precise values of g and b for each year were found "experimentally" by seeing which values 
gave a total population that agreed more or less with the annual census figures. Fitting the model to 
the census data was further complicated by the culling (killing by rangers) of wildebeest between 
1969 and 1972, to relieve pressure on the vegetation. However, since culling is indiscriminate 

among the non-calf population it is easy to argue that the term glk  in equations (6.4) and (6.5) must 

be replaced by ( )gl dk k+
, where dk  is the total number culled in year k. This number is 

accurately known.  

The model run starts in 1969 (k = 1), with c1  = 3660, y1
 = 2240, 

t1 = 1680 and w1  = 6440. These 
figures are from the census. Table 6.1 shows the total population predicted by the model compared 
with the census data. The column headed Model 1 shows projections taking the annual culling into 

account, whereas Model 2 assumes no culling (by setting dk = 0  when running the model). Note 
also that a particular projection is based on the input in the previous row, e.g. if l1 = 500, d1 = 572, 
b = 0.5 and g = 4, the model predicts 

   
 
   

   
 

   
Table 6.1 Wildebeest model data and output 
 

Year  
1969 
1970 
1971 
1972 
1973 
1974 
1975 
The parameters g and b are realistic. 19701972 were dry years in the Park, when lion killed regularly 
at waterholes. This justifies the higher g and lower b values. In subsequent years the lion did not kill 
so freely, since the improved vegetation and declining wildebeest population made the prey more 
difficult to find. The same factors lead to a higher calf survival-rate.  
The program below implements this model. Note that two sets of variables are used to represent the 
age groups. C, Y, T and W represent values in year k, while NC, NY, NT and NW represent values in 
year k+1. One might have been tempted to code the update equations as follows: 

   
 Y = B * C                 
 T = Y - (G * L + D) * Y / (Y + T + W)      
 ... 
 

   
This, however, would mean that we would be using next year's Y, obtained from equation (6.3), on 
the righthand side of equation (6.4), instead of this year's. Using two sets of variables means that the 
set representing the current year's values must be updated at the end of each year in readiness for 
next year's update. Try the program out with different parameter values, to see what happens. Also 
try running it for longer.  

   
IMPLICIT NONE 
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INTEGER   Year 
 
REAL ::   A  = 0.45     ! adult birth-rate 
REAL ::   Ad = 0.15     ! a-dash: 2-yr-old birth-rate 
REAL ::   C  = 3660     ! calves 
REAL ::   T  = 1680     ! 2-yr-olds 
REAL      Tot           ! total population 
REAL ::   W  = 6440     ! adults 
REAL ::   Y  = 2240     ! yearlings 
 
REAL NC, NT, NW, NY     ! next year's population 
REAL L, D, B, G         ! other model parameters 
 
DO Year = 1969, 1974 
  WRITE( *, '(I4, " data: ")', ADVANCE = 'NO' ) Year 
  READ*, L, D, B, G 
  NY = B * C                                                 
  NT = Y - (G * L + D) * Y / (Y + T + W)                     
  NW = W + T - (G * L + D) * (T + W) / (Y + T + W)           
  NC = A * NW + Ad * NT                                      
  C = NC 
  Y = NY 
  T = NT 
  W = NW 
  Tot = C + Y + T + W 
  WRITE( *, '(I4, " projection: ", F6.0)' ) Year+1, Tot 
  PRINT* 
END DO 
 
END 

Chapter 6 Summary 
   
• A DO construct with parameters should be used to program a deterministic loop, where the 

number of iterations (the iteration count) is known to the program (i.e. in principle to the 
programmer) before the loop is encountered. This situation is characterized by the general 
structure plan: 

 Repeat N times: 
          Block of statements to be repeated 
• where N is known or computed before the loop is encountered for the first time, and is not 

changed by the block. The syntax for DO in this case is  
 [name:] DO  variable = first, last, step 
                block 
 END DO [name] 
 All forms of the construct may be optionally named. 
 If step is omitted, it defaults to 1. If step is negative, variable will be decreased as long as first is 

greater than or equal to last. 
• DO with EXIT may be used to program a non-deterministic loop, where the iteration count is 

not known in advance, i.e. whenever the truth value of the condition for exiting is changed in 
the DO block. This situation is characterized by the following two structure plans: 

 Repeat  until condition is true: 
           Block to be repeated (reset truth value of condition).  
 or 
 Repeat:  
           Block to be repeated (reset truth value of condition)  
 until condition is true. 
 Note that condition is the condition to exit from the loop. 
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 The syntax of these forms is  
 DO   
  IF  (condition) EXIT 
  block 
 END DO 
 and 
 DO   
  block 
  IF(condition) EXIT 
 END DO 
• A non-deterministic loop may also be programmed with a DO WHILE construct. Here the 

general structure plan is 
 While condition is true repeat: 
          Block of statements to be repeated. 
 Note that condition is now the condition to make another iteration, not to exit.  
 The syntax for this structure is  
 DO WHILE (condition) 
                              block 
                  END DO 

   
This construct may incur optimization penalties. 
• The DO variable and parameters should be integers. 
• The DO variable should not be explicitly changed in the DO block. 
• The iteration count (which may be zero) is calculated from the initial values of the parameters. 
• DO constructs may be nested to any depth. 
• Good programming style requires that an EXIT from a DO occurs as near to the top or the end 

of the loop as possible. 
• The IOSTAT specifier may be used with READ to detect an end-of-file condition. 

Chapter 6 Exercises 
   

6.1      Write a program to find the sum of the successive even integers 2, 4, ..., 200. (Answer: 
10100)  
6.2      Write a program which produces a table of sin x and cos x for angles x from 0° to 90° in steps 
of 15°.  
6.3      A person deposits $1000 in a bank. Interest is compounded monthly at the rate of 1% per 
month. Write a program which will compute the monthly balance, but write it only annually for 10 
years (use nested DO loops, with the outer loop for 10 years, and the inner loop for 12 months). Note 
that after 10 years, the balance is $3300.39, whereas if interest had been compounded annually at the 
rate of 12% per year the balance would only have been $3105.85.  
6.4      There are many formulae for computing π (the ratio of a circle's circumference to its 
diameter). The simplest is  

   
 

   
   

 
   
which comes from the series  
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when x = 1.  
(a) Write a program to compute π using series (E6.1). Use as many terms in the series as your 
computer will reasonably allow (start modestly, with 100 terms, say, and re-run your program with 
more and more each time). You should find that the series converges very slowly, i.e. it takes a lot of 
terms to get fairly close to π.  
(b) Rearranging the series speeds up the convergence: 

   
 

   
   

 
   
Write a program to compute π using this series instead. You should find that you need fewer terms 
to reach the same level of accuracy that you got in (a).  
(c) One of the fastest series for π is 

   
 
   

   
 

   
Use this formula to compute π. Don't use the standard function ATAN to compute the arctangents, 
since that would be cheating. Rather use the series (E6.2). 
6.5      The following method of computing π is due to Archimedes: 
1. Let A = 1 and N = 6 
2. Repeat 10 times, say: 
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3. Stop 

Write a program to implement the algorithm.  
6.6      Write a program to compute a table of the function 

   
 
   

   
 

   
over the (closed) interval [-1, 1] using increments in x of (a) 0.2 (b) 0.1 and (c) 0.01. Use a DO with 
integer variable and parameters; compute the iteration count explicitly as in Section 6.3 Use your 
tables to plot a graph of f(x) for the three cases, and observe that the tables for (a) and (b) give totally 
the wrong picture of f(x).  
6.7      The transcendental number e (2.718281828 ...) can be shown to      be the limit of 
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as x tends to zero (from above). Write a program which shows how this expression converges to e as 
x gets closer and closer to zero (use the real kind with the greatest precision available on your 
system).  
6.8      A square wave of period T may be defined by the function  

   
 
   

   
 

   
The Fourier series for f(t) is given by 

   
 
   
   

 
   
It is of interest to know how many terms are needed for a good approximation to this infinite sum.  
Taking T = 1, write a program to compute and display the sum to n terms of the series for t from 0 to 
1 in steps of 0.1, say. Run the program for different values of n, e.g. 1, 3, 6, etc. 
6.9      If an amount of money A is invested for k years at a nominal annual interest rate r (expressed 
as a decimal fraction), the value V of the investment after k years is given by 

   
 
   

   
 

   
where n is the number of compounding periods per year. Write a program to compute V as n gets 
larger and larger, i.e. as the compounding periods become more and more frequent, like monthly, 
daily, hourly, etc. Take A = 1000, r = 4% and k = 10 years. You should observe that your output 
gradually approaches a limit. Hint: use a DO loop which doubles n each time, starting with n = 1. 

Also compute the value of the formula Aerk
 for the same values of A, r and k (use the intrinsic 

function EXP), and compare this value with the values of V computed above. What do you 
conclude? 
6.10      Write a program to compute the sum of the series 1 + 2 + 3... such that the sum is as large as 
possible without exceeding 100. The program should write out how many terms are used in the sum. 
6.11      One of the programs in Section 6.5 shows that an amount of $1000 will double in about 
seven years with an interest rate of 10%. Using the same interest rate, run the program with initial 
balances of $500, $2000 and $10,000 (say) to see how long they all take to double. The results may 
surprise you. 
6.12      Write a program to implement the structure plan of Exercise 4.2. 
6.13      Use the Taylor series 

   
 

   
   

 
   
to write a program to compute cos x correct to four decimal places (x is in radians). See how many 
terms are needed to get 4-figure agreement with the intrinsic function COS. 
6.14      A man borrows $10,000 to buy a used car. Interest on his loan is compounded at the rate of 
2% per month while the outstanding balance of the loan is more than $5000, and at 1% per month 
otherwise. He pays back $300 every month, except for the last month, when the repayment must be 
less than $300. He pays at the end of the month, after the interest on the balance has been 
compounded. The first repayment is made one month after the loan is paid out to him. Write a 
program which writes out a monthly statement of the balance (after the monthly payment has been 
made), the final payment, and the month of the final payment. 
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6.15      A projectile, the equations of motion of which are given in Chapter 3, is launched from the 
point O with an initial velocity of 60 m/s at an angle of 50° to the horizontal. Write a program which 
computes and writes out the time in the air, and horizontal and vertical displacement from the point 
O every 0.5 seconds, as long as the projectile remains above a horizontal plane through O.  
6.16      When a resistor (R), capacitor (C) and battery (V) are connected in series, a charge Q builds 
up on the capacitor according to the formula 

   
 
   

   
 

   
if there is no charge on the capacitor at time t = 0. The problem is to monitor the charge on the 
capacitor every 0.1 seconds in order to detect when it reaches a level of 8 unites of charge, given that 
V = 9, R = 4 and C = 1. Write a program which writes the time and charge every 0.1 seconds until 
the charge first exceeds 8 units (i.e. the last charge written must exceed 8). Once you have done this, 
rewrite the program to output the charge only while it is strictly less than 8 units. 
6.17      If a population grows according to the logistic model, its size X(t) at time t is given by the 
formula 

   
 

   
   

 
   
where X 0 is the initial size at time t = 0, r is the growth-rate and K is the carrying capacity of the 
environment. Write a program which will compute and print values of X(t) over a period of 200 

years. Take X 0 = 2, r = 0.1 and K = 1000. Experiment with different values of K, and see if you can 
interpret K biologically.  
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Chapter 7 Introduction 
   
Programs seldom run correctly the first time, even for experienced programmers. In computer 
jargon, an error in a program is called a bug. The story is that a moth short-circuited two thermionic 
valves in one of the earliest computers. This primeval (charcoaled) "bug" took days to find. The 
process of detecting and correcting such errors is called debugging. There are four types of errors: 
• compilation errors  
• run-time errors 
• errors of logic 
• rounding error. 

   
In this chapter we deal with the sort of errors that can arise with the programming we have done so 
far.  
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7.1. Compilation Errors 
   
Compilation errors are errors in syntax and construction, like spelling mistakes, that are picked up 
by the compiler during compilation, the process whereby your program is translated into machine 
code. They are the most frequent type of error. The compiler prints messages, which may or may not 
be helpful, when it encounters such an error.  
Generally, there are three sorts of compiler errors: 
• rdinary errors—the compiler will attempt to continue compilation after one or more of these 

errors has occurred, e.g. 
   

missing ENDIF statements 
   
   

 
   
• fatal errors—the compiler will not attempt further compilation after detecting a fatal error, e.g. 

   
Program too complicated–too many strings 

   
   

 
   
• warnings—these are not strictly errors, but are intended to inform you that you have done 

something unusual which might cause problems later, e.g. 
   

Expression in IF construct is constant 
   
   

 
   

 or that you have used an obsolescent feature, e.g. 
   

Non-integer DO control variables are obsolescent 
   
   

 
   
   
(these messages are generated by the FTN90 compiler; your compiler might have slightly different 
messages).  
There are a large number of compiler error messages, which will be listed in the user's manual that 
comes with your particular compiler. Since the compiler is not as intelligent as you are, the error 
messages can sometimes be rather unhelpful—even misleading. Some common examples are given 
below.  

   
Inappropriate use of symbol X at line N 

   
The name X has been used to represent more than one object, most probably the program name as 
well as a variable. The duplicated occurrence will be at line N. 

   
Implicit type for X at line N 

   
The variable X has not been declared explicitly, following an IMPLICIT NONE statement. 
Spelling mistakes in declared variables will be spotted in this way. 

   
Syntax error at line N 

   
This is one of the most infuriating messages, and covers a multitude of errors, e.g. 

   
G = 9,8                !comma instead of decimal point 

   
   
IF (A = 0) X = 1       != instead of == in a logical expression 

   
   
IF (A == 0) THEN X = 1 !incorrect use of THEN in a simple IF ..  
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          !.. or incorrect placement of a statement after THEN  

   
   
X = 1 + (2 * 3         !unpaired parentheses  

   
   

 
   

One wonders why the compiler could not be a little more specific. 
   
Symbol X referenced but not set at line N 

   
This is a helpful message which warns you that no value has been assigned by the program to X. 
However, the line number given seems to refer to the last line in the program. 
Curiously, however, the following coding runs without error (under FTN90): 

   
IMPLICIT NONE 

   
   
REAL X 

   
   

 
   
   
X = X + 1 

   
   

 
   
The result is garbage (1.4209760E+14 with the FTN90 compiler on one occasion) because of 
course X is undefined. It seems as if the compiler thinks that because X appears on the left-hand side 
of an assignment it must be defined! 
There are many, many more compiler errors—you will probably have discovered a good number on 
your own by now. With experience you will gradually become more adept at spotting your mistakes. 

7.2. Run-time Errors 
   
If a program compiles successfully, it will run. Errors occurring at this stage are called run-time 
errors, and are invariably fatal, i.e. the program "crashes". An error message, such as  

   
Floating point division by zero 
 

   
or 

   
Floating point arithmetic overflow 
 

   
is generated. The latter is quite common. It occurs, for example, when an attempt is made to 
compute a real expression which is too large, or when SQRT has a negative argument, or when the 
argument of LOG is non-positive. 
Some compilers have interactive debugging facilities, where you can, for example, step through a 
program line by line until you find the line where the run-time error occurs, or where you can mark a 
line in the code and run to that point. These facilities are extremely helpful, especially for debugging 
large programs; you should make a point of finding out and making use of what your compiler offers 
in this line.  

Error interception 
   

Fortran 90 has facilities for intercepting and handling certain run-time errors, such as 
input/output errors (e.g. attempting to read past the end-of-file, or from a non-existent file). 
These are discussed later, when we deal with advanced I/O and file handling.  
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7.3. Errors in Logic 
   
These are errors in the actual algorithm you are using to solve a problem, and are the most difficult 
to find; the program runs, but gives the wrong answers! It's even worse if you don't realize the 
answers are wrong. The following tips might help you to check out the logic.  
• Try to run the program for some special cases where you know the answers.  
• If you don't know any exact answers, try to use your insight into the problem to check whether 

the answers seem to be of the right order of magnitude.  
• Try working through the program by hand (or use the debugging facilities) to see if you can 

spot where things start going wrong.  

7.4. Rounding Error 
   
At times a program will give numerical answers to a problem which appear inexplicably different 
from what we know to be the correct mathematical solution. This can be due to rounding error, 
which results from the finite precision available on the computer, e.g. two or four bytes per variable, 
instead of an infinite number.  
Run the following program extract: 

   
X = 0.1 
 
DO 
  X = X + 0.001 
  PRINT*, X 
  IF (X == 0.2) EXIT 
END DO 
 

   
You will find that you need to crash the program to stop, e.g. with ctrl-break on a PC. X never has 
the value 0.2 exactly, because of rounding error. In fact, X misses the value of 0.2 by about 10 -9, as 
can be seen by printing X - 0.2 as well each time. It would be better to replace the EXIT clause 
with  

   
IF (X > 0.2) EXIT 
 

   
or  

   
IF (ABS(X - 0.2) < 1E-6) EXIT 
 

   
In general, it is always better to test for "equality" of two real expressions in this way, e.g. 

   
IF (ABS(A - B) < 1E-6) PRINT*, 'A practically equal to B' 
 

   
Rounding error may be reduced (although never completely eliminated) by using the real kind with 
higher precision than the default, e.g. 

   
REAL(KIND = 2) A, B 
 

   
Rounding error may also be reduced by a mathematical re-arrangement of the problem. If the well-
known quadratic equation is written in the less familiar form 

   
 

   
   

 
   
the two solutions may be expressed as 
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If e is very small compared with a, the second root is expressed as the difference between two nearly 
equal numbers, and considerable significance is lost. E.g. taking a = 5 x 10 6 and e = 1 gives x2 =–

9.42 x 10 -9 with FTN90. However, the second root may also be expressed mathematically as 
   

 
   

   
 

   
Using this form with FTN90 gives x2 = 10

 -7, which is more accurate. Rounding error is also 
discussed in Chapter 16. 

 
Chapter 7 Summary 

   
• Compilation errors are mistakes in the syntax (coding). 
• Execution (run-time) errors occur while the program is running 
• Input/output errors may be intercepted at run-time. 
• Debugging facilities may be used to work through a program, statement by statement.  
• Logical errors are errors in the algorithm used to solve the problem. 
• Rounding error occurs because the computer can store numbers only to a finite accuracy. It is 

reduced but not necessarily eliminated by using reals with higher precision than the default. 

Chapter 7 Exercises 
   

7.1      The Newton quotient 
   
 

   
   

 
   
may be used to estimate the first derivative f’(x) of a function f(x), if h is "small". Write a program to 
compute the Newton quotient for the function  

   
 
   

   
 

   
at the point x = 2 (the exact answer is 4) for values of h starting at 1, and decreasing by a factor of 10 
each time. The effect of rounding error becomes apparent when h gets "too small", i.e. less than 
about 10 -6. 
7.2      The solution of the set of simultaneous equations 
ax + by = c  
dx + ey = f 
(Exercise 5.5) is given by 
x = (ce–bf)/(ae–bd), 
y = (af–cd)/(ae–bd). 
If (ae–bd) is small, rounding error may cause quite large inaccuracies in the solution. Consider the 
system 
0.2038x + 0.1218y = 0.2014, 
0.4071x + 0.2436y = 0.4038. 
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Show that with four-figure floating point arithmetic the solution obtained is x =–1.714, y = 4.286. 
This level of accuracy may be simulated in the solution of Ex. 5.5 with some statements like  

   
AE = NINT( A * E * 1E5 ) / 1E5 
 

   
and appropriate changes in the coding. The exact solution, however, which can be obtained with 
default precision, is x =–2, y = 5. If the coefficients in the equations are themselves subject to 
experimental error, the "solution" of this system using limited accuracy is totally meaningless.  
7.3      This problem, suggested by R.V. Andree, demonstrates another numerical problem called ill-
conditioning, where a small change in the coefficients causes a large change in the solution. Show 
that the solution of the system  
x + 5.000y = 17.0  
1.5x + 7.501y = 25.503 
is x = 2, y = 3, using the program for Ex. 5.5 with default precision. Now change the term on the 
right-hand side of the second equation to 25.501, a change of about one part in 12,000, and observe 
that a totally different solution results. Also try changing this term to 25.502, 25.504, etc. If the 
coefficients are subject to experimental errors, the solution is again meaningless. One way to 
anticipate this sort of error is to perform a sensitivity analysis on the coefficients: change them all in 
turn by the same percentage, and observe what effect this has on the solution.  
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Chapter 8 Introduction 
   

We saw in Chapter 4 that the logic of a non-trivial problem could be broken down into 
separate subprograms (or procedures), each carrying out a particular, well-defined task. It 
often happens that such subprograms can be used by many different “main” programs, and 
in fact by different users of the same computer system. Fortran 90 enables you to 
implement these subprograms as functions and subroutines which are independent of the 
main program. Examples are procedures to perform statistical operations, or to sort items, 
or to find the best straight line through a set of points, or to solve a system of differential 
equations.  
Subprograms may be internal or external. Useful procedures may be collected together as 
libraries. Such collections are called modules. Main programs (i.e. everything we have 
seen so far), external subprograms, and modules are referred to as program units.  
Basically, an internal subprogram is contained within another program unit—and therefore 
compiled with it, whereas an external subprogram is not—it is in fact compiled separately. 
An important difference between the two types of subprogram is that an internal 
subprogram may use names of entities declared by the program unit that contains it, 
whereas an external subprogram is not contained within another program unit.  
We deal first with internal subprograms. 

8.1. Internal Subprograms 
   
There are two types of subprograms: functions and subroutines. We will first look at functions. 
We have already seen how to use some of the intrinsic functions supplied by Fortran 90, such as 
SIN, COS, LOG, etc. You can write your own functions, to be used in the same way in a program. 
Before we discuss the rules in detail, we will look at some examples.  

Newton's method again 
   
Newton's method (see also Chapter 16) may be used to solve a general equation f(x) = 0 by repeating 
the assignment  

   
 

   
   

 
   
where f'(x) is the first derivative of f(x), until f(x) has come close enough to zero.  

Suppose that ( )f x x x= + −3 3
.Then ( )′ = +f x x3 12

.The program below uses Newton's 
method to solve this equation starting with x = 2, and stopping either when the absolute value of f(x) 

is less than 10 6−
, or after 20 iterations, say. It uses two functions: F(X) for f(x) and DF(X) for 

f'(x).  
   
PROGRAM Newton 
! Solves f(x) = 0 by Newton's method 
 
IMPLICIT NONE 
INTEGER  ::  Its       = 0             ! iteration counter  
INTEGER  ::  MaxIts    = 20            ! maximum iterations 
LOGICAL  ::  Converged = .false.       ! convergence flag 
REAL     ::  Eps       = 1e-6          ! maximum error      
REAL     ::  X         = 2             ! starting guess     
 
DO WHILE (.NOT. Converged .AND. Its < MaxIts) 
  X = X–F(X) / DF(X) 
  PRINT*, X, F(X) 
  Its = Its + 1 
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  Converged = ABS( F(X) ) <= Eps 
END DO 
 
IF (Converged) THEN 
  PRINT*, 'Newton converged' 
ELSE 
  PRINT*, 'Newton diverged' 
END IF 
 
CONTAINS 
  FUNCTION F(X) 
  ! problem is to solve f(x) = 0 
    REAL F, X 
    F = X ** 3 + X–3     
  END FUNCTION F 
 
  FUNCTION DF(X) 
  ! first derivative of f(x) 
    REAL DF, X 
    DF = 3 * X ** 2 + 1 
  END FUNCTION DF 
END PROGRAM Newton 
 

   
Note that there are two conditions that will stop the DO loop: either convergence, or the completion 
of 20 iterations. Otherwise the program could run indefinitely.  

Rotation of co-ordinate axes 
   
Functions are particularly useful when arithmetic expressions, which can become long and 
cumbersome, need to be evaluated repeatedly. A good example is the rotation of a Cartesian co-
ordinate system. If such a system is rotated counter-clockwise through an angle of a radians, the new 
co-ordinates (x', y') of a point referred to the rotated axes are given by  
x' = x cos a + y sin a 
y' = –x sin a + y cos a 
where (x, y) are its co-ordinates before rotation of the axes. The following functions could be used to 
define the new co-ordinates: 

   
FUNCTION Xnew( X, Y, A ) 
  REAL XNew, X, Y, A 
  Xnew = X * COS( A ) + Y * SIN( A ) 
END FUNCTION Xnew 
 
FUNCTION YNew( X, Y, A ) 
  REAL YNew, X, Y, A 
  YNew =–X * SIN( A ) + Y * COS( A ) 
END FUNCTION Ynew 
 

   

Internal functions 
   
Since functions and subroutines are very similar, common features are described by referring to 
them collectively as subprograms. Most of the following rules apply also to external subprograms, 
except where otherwise stated. 
All internal subprograms are placed between a CONTAINS statement and the END statement of the 
main program. Subprograms look almost like a main program, except for their headers and END 
statements. Internal subprograms may not contain other subprograms, and so may not themselves 
have a CONTAINS statement.  
The general syntax of an internal function is 
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FUNCTION Name( [argument  list] ) 
  [declaration statements] 
  [executable statements] 
END FUNCTION [Name] 
 

   
The statement 

   
FUNCTION Name( argument  list ) 
 

   
is called the function statement, or header, or declaration. Note that if the main program has an 
IMPLICIT NONE statement (and sound programming style insists that it should have one) the 
function name and arguments must be declared with a type. Although this may be done in the main 
program, it is recommended that you declare the function name and arguments in the function body 
itself.  
Since a value is associated with the function name, this value must be assigned to the function name 
in the function body. Note that when the function name appears on the left-hand side of an 
assignment statement, its arguments must be omitted, e.g. 

   
YNew =–X * SIN( A ) + Y * COS( A ) 
 

   
in the function YNew above. The function is said to return this value to the calling, or host, program. 
A function value may also be returned by means of a RESULT clause (see below). 
An internal subprogram automatically has access to all its host's entities. Variables declared in the 
host program are therefore global, in the sense that they are available throughout the scope of the 
host program. This scope includes all internal subprograms. This can sometimes lead to serious 
bugs, which is why internal subprograms should only be used for fairly small tasks peculiar to their 
particular host. More general procedures should be written as external subprograms. 
Since an internal subprogram is in a sense declared in its host, this scoping rule also implies that 
internal subprograms are known to each other, i.e. they may call each other.  
However, if a variable is redeclared in a subprogram, that subprogram no longer has access to the 
original variable of the same name declared in the host.  

Arguments 
   
The arguments in a subprogram statement, e.g. X, Y and A in 

   
FUNCTION YNew( X, Y, A ) 
 

   
are dummy arguments. That is, they exist only for the purpose of defining the function. They 
represent general variables of the same type. Consequently, the same names do not have to be used 
when calling or invoking the subprogram. E.g. YNew may be invoked in the host program with the 
statement 

   
YNew( U, V, Pi/2 ) 
 

   
You can think of the values of the actual arguments U, V and Pi/2 being copied into the dummy 
arguments X, Y and A respectively. The actual arguments are said to be passed to the subprogram. 
An actual argument which is a variable name must have the same type and kind type parameters as 
its corresponding dummy argument. The exact way in which arguments are passed is discussed 
below. 
You should be aware that if the value of a dummy argument is changed inside a function, that 
change is "copied back" into the corresponding actual argument in the host program, if it is a 
variable. This is an undesirable side effect in a function, and should be avoided in the interests of 
sound programming. If you want to change an actual argument, the correct vehicle is a subroutine. 
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Local and global variables 
   
The next program contains an internal function Fact(N) which computes n! There is something 
wrong with it. See if you can work out by hand what the first few lines of output will be, before 
running it. 

   
PROGRAM Factorial 
IMPLICIT NONE 
INTEGER I 
 
DO I = 1, 10 
  PRINT*, I, Fact(I) 
END DO 
 
CONTAINS 
  FUNCTION Fact( N ) 
    INTEGER Fact, N, Temp 
    Temp = 1 
    DO I = 2, N 
      Temp = I * Temp 
    END DO 
    Fact = Temp 
  END FUNCTION 
END 
 

   
The problem is that I is a global variable, i.e. the name I represents the same variable inside and 
outside the function. Fact is first called when I = 1, which is the first value written. This value is 
passed to the function's dummy argument N. The same I is now given the initial value 2 by the DO 
loop inside Fact, but since it is greater than N, the DO loop is not executed, so I still has the value 2 
when Fact returns to be printed in the main program. However, I is now incremented to 3 in the 
DO loop in the main program, which is the value it has when the second call to Fact takes place. In 
this way, Fact is never computed for an even value of I. All this is a consequence of the variable I 
being global. 
The problem is solved by redeclaring I in the function to make it local. You should make it a rule to 
declare all variables used in subprograms. That way you can never inadvertently make use of a 
global variable in the wrong context. 
If you need to get information into a subprogram from its host, the safest way to do it is through the 
dummy arguments. When there is a large amount of such information to be shared by many 
subprograms, the best solution is to declare global variables in a module, and for subprograms 
needing access to those variables to use the module (see Section 8.5) 
The use of IMPLICIT NONE in a main program is particularly important when there are internal 
subprograms. It forces you to declare all local variables and dummy arguments, which makes for 
good programming style.  

The RETURN statement 
   
Normal exit from a subprogram occurs at its END statement. However, it is sometimes convenient to 
exit from other points. This may be done with the statement RETURN. Excessive use of RETURN 
should be avoided since it very easily leads to spaghetti (unstructured code).  

Statement functions 
   
In older versions of Fortran a function could be defined in a single line, e.g. 

   
F(X) = X ** 3 + X - 3 
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This form is supported by Fortran 90, but is not recommended since it does not follow many of the 
general rules for subprograms. 

Internal subroutines 
   
Subroutines are very similar to functions. The differences are: 
• No value is associated with the name of a subroutine, hence it must not be declared. 
• A subroutine is invoked with a CALL statement. 
• The keyword SUBROUTINE is used in the definition and the END statement. 
• A subroutine need not have any arguments, in which case the name is written without 

parentheses, e.g. 
   

CALL PLONK 
   
   

 
   

 A function without arguments must have empty parentheses, e.g. Fung(). 
   
The following program prints a line with the subroutine PrettyLine, which has two dummy 
arguments. Num is the number of characters to be printed; Symbol is the ASCII code of the 
characters to be printed. 

   
IMPLICIT NONE  
 
CALL PrettyLine( 5, 2 ) 
 
CONTAINS 
  SUBROUTINE PrettyLine( Num, Symbol ) 
    INTEGER I, Num, Symbol 
    CHARACTER*80 Line 
    DO I = 1, Num 
      Line(I:I) = ACHAR( Symbol ) 
    END DO 
    PRINT*, Line 
  END SUBROUTINE 
END 
 

   
Character substrings, such as Line(I:I), are discussed in Chapter 11. 
The next example shows how dummy arguments may be used to take information back to the calling 
program —in this case their values are exchanged: 

   
IMPLICIT NONE 
REAL A, B 
 
READ*, A, B 
CALL SWOP( A, B ) 
PRINT*, A, B 
 
CONTAINS 
  SUBROUTINE SWOP( X, Y ) 
    REAL Temp, X, Y 
    Temp = X 
    X = Y 
    Y = Temp 
  END SUBROUTINE 
END 
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What actually happens is that the actual arguments A and B are passed by reference (see Section 
8.7). The effect is that the values of the actual arguments are given to the dummy arguments, and 
any changes made to the dummy arguments are copied back to the actual arguments. In this way 
information can be returned from the subroutine. This can have unpleasant side effects. You might 
inadvertently change a dummy argument inside a subprogram —after return to the calling program 
the corresponding actual argument will also be changed, perhaps with disastrous effects. Fortran 90 
has a way of preventing this, called argument intent, which is discussed in Section 8.7. 
Since Temp in the example above is declared in the subroutine it is local to it and not accessible to 
the main program.  
The general syntax of an internal subroutine is therefore  

   
SUBROUTINE Name[( argument list )] 
                     [declaration statements] 
                     [executable statements] 
         END SUBROUTINE [Name] 

8.2. The Main Program 
   
Every complete program must have one and only one main program, which has the form 

   
PROGRAM name 
  [declaration statements] 
  [executable statements] 
[CONTAINS 
  internal subprograms] 
END [PROGRAM [name]] 
 

   
If the last statement ahead of the CONTAINS statement does not result in a branch (and it should 
not), control passes over the internal subprograms to the END statement, and the program stops. In 
other words, the internal subprograms are only executed if properly invoked by a CALL statement in 
the case of a subroutine, or by referencing its name, in the case of a function. 

8.3. External Subprograms 
   
An external subprogram resides in a separate file from the main program. It will generally perform a 
specific task, and is external in order to be accessible to many different calling programs. Apart from 
the header and END statement, a subprogram is identical in appearance to a main program:  

   
SUBROUTINE name[( arguments )] 
  [declaration statements] 
  [executable statements] 
[CONTAINS 
  internal subprograms] 
END [SUBROUTINE [name]] 
 

   
or 

   
FUNCTION name([ arguments ]) 
  [declaration statements] 
  [executable statements] 
[CONTAINS 
  internal subprograms] 
END [FUNCTION [name]] 
 

   
Note the small but significant differences between external and internal subprograms: 
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• external subprograms may themselves contain internal subprograms (which will only be 
accessible to the host external subprogram); internal subprograms may not contain further 
internal subprograms 

• the keyword FUNCTION or SUBROUTINE is optional in the external subprogram END 
statement but obligatory in the internal subprogram END statement. 

   
Note also that, since an external subprogram resides in a separate file from the main program, it 
must be compiled separately. Under FTN90 an intermediate type of machine code, called 
relocatable binary is produced in a file with the .OBJ extension. This in turn must be linked with the 
calling program by means of a special program called a linker, finally resulting in a .EXE version of 
the main program. Your compiler manual will have the details of how to do this. Once it is finally 
debugged, an external subprogram need never be recompiled, only linked. This prevents you from 
wasting time in compiling it over and over, which would be the case if it was an internal 
subprogram.  
As an example, let's rewrite the internal subroutine SWOP of Section 8.1 as an external subroutine. 
The main program (in one file) becomes 

   
IMPLICIT NONE 
EXTERNAL SWOP 
REAL A, B 
 
READ*, A, B 
CALL SWOP( A, B ) 
PRINT*, A, B 
 
END 
 

   
and the external subroutine (in a separate file) is then 

   
SUBROUTINE SWOP( X, Y )   
  REAL Temp, X, Y         
  Temp = X                
  X = Y                   
  Y = Temp                
END SUBROUTINE            
 

   
The EXTERNAL statement is discussed below. You should now try compiling, linking and running 
this example. 
If you want more than one external subprogram in the same file, you should use a module (Section 
8.5).  

The EXTERNAL statement 
   
If you accidentally used the name of an intrinsic subprogram for an external subprogram, the 
compiler would by default assume you were referring to the intrinsic subprogram, so your external 
subprogram would be inaccessible. You might think you know the names of all intrinsic 
subprograms, and that this problem will not present itself. However, you could have a problem when 
transporting your code to another installation, because the standard allows compilers to provide 
additional intrinsic subprograms. 
To avoid this problem, the names of all external subprograms should be specified in an EXTERNAL 
statement, which should come after any USE (Section 8.5) or IMPLICIT statements. Naming an 
external subprogram like this ensures that it is linked as an external subprogram, and makes any 
intrinsic subprogram with the same name unavailable. This practice is strongly recommended. 

8.4. Interface Blocks 
   
If the compiler is to generate calls to subprograms correctly, it needs to know certain things about 
the subprogram: name, number and type of arguments, etc. This collection of information is called 
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the subprogram's interface. In the case of intrinsic subprograms, internal subprograms and module 
subprograms the interface is always known to the compiler, and is said to be explicit. 
However, when the compiler generates a call to an external subprogram this information is not 
available, and the subprogram interface is said to be implicit. 
We have seen that the EXTERNAL statement in the calling program is sufficient to supply the 
compiler with the name of the external subprogram, and this enables it to be found and linked. 
However, the interface is still implicit, and in more complicated cases (such as with optional or 
keyword arguments, as discussed below) further information is required for a satisfactory interface. 
Fortran 90 has a mechanism, called an interface block, which enables an explicit interface to be 
made. 
The general form of an interface block, which must be placed in the scope of the calling program, is 

   
INTERFACE 
  interface body 
END INTERFACE 
 

   
where the interface body could be an exact copy of the subprogram header, declarations of its 
arguments and results, and its END statement. However, the names of the arguments may be 
changed, and other specifications may be included (e.g. for a local variable), although not DATA or 
FORMAT statements or internal subprograms.  
The calling program for the external subroutine SWOP above could be rewritten with an interface 
block as follows: 

   
IMPLICIT NONE 
 
INTERFACE  
  SUBROUTINE SWOP( X, Y ) 
    REAL X, Y 
  END SUBROUTINE 
END INTERFACE 
 
REAL A, B 
 
READ*, A, B 
CALL SWOP( A, B ) 
... 
 

   
More general access to interface blocks may be provided by means of modules. 
Interface blocks are also used for overloading a number of subprogram names with a single 
"generic" name. 

When to use interface blocks 
   

It is never wrong to use an interface block for an external procedure. However, there are 
situations when one must be used. These are summarized in Figure 8.1. We will encounter 
most of these situations later; they are collected here for ease of reference. 
 
Figure 8.1   When to use an interface block  
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8.5. Modules 
   
Recall that there are three types of program unit: a main program, an external subprogram, and a 
module. 
A module differs from a subprogram in two important ways: 
• a module may contain more than one subprogram (called module subprograms); 
• a module may contain declaration and specification statements which are accessible to all 

program units which use the module.  
   
Modules are also compiled separately. 
In the following example, the subroutine SWOP is placed in a module MyUtils. For the sake of 
illustration, the module also declares a real parameter Pi. The main program now has a statement 
USE MyUtils which renders the module accessible to it. The name Pi is therefore known to the 
main program. The amended main program is: 

   
USE MyUtils 
 
IMPLICIT NONE 
REAL A, B 
 
READ*, A 
B = Pi 
CALL SWOP( A, B ) 
PRINT*, A, B 
 
END 
 

   
while the module (again saved in a separate file) is 

   
MODULE MyUtils 
  REAL, PARAMETER :: Pi = 3.1415927 
 
CONTAINS 
  SUBROUTINE SWOP( X, Y ) 
    REAL Temp, X, Y 
    Temp = X 
    X = Y 
    Y = Temp 
  END SUBROUTINE SWOP 
END MODULE MyUtils 
 

   
Note that the EXTERNAL statement is now neither necesssary nor in fact correct, since SWOP is no 
longer an external subprogram —it is now technically a module subprogram. 
The general form of a module is 

   
MODULE name 
  [declaration statements] 
[CONTAINS 
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  module subprograms] 
END [MODULE [name]] 
 

   
It is accessed by means of a USE statement in the host program unit, which must precede all other 
statements: 

   
USE module-name 
 

   
A module subprogram has exactly the same form as an external subprogram, except that the 
FUNCTION or SUBROUTINE keyword must be present in the END statement. It has access to all 
other entities in the module, including all variables declared in it. Note that a module subprogram 
may contain its own internal subprograms.  
We have now encountered all three types of program unit. The nesting of internal, external and 
module subprograms relative to these program units is illustrated in Figure 8.2. 
A module may USE other modules, although it may not access itself indirectly through a chain of 
USE statements in different modules. No ordering of modules is required by the standard. In 
developing libraries of modules, however, you should try to design a hierarchy to ensure that later 
modules only use earlier ones. 
Since a module may contain declaration statements which are accessible to all host program units, 
global variables may be declared in this way for use by all hosts accessing the module. This feature 
is particularly useful for making more complicated declarations, such as those for derived types, 
globally available. 
In particular, interface blocks may be grouped together into modules. As an example, consider again 
the external subroutine SWOP of Section 8.3. Its interface could be in a module MyMod,  

 
Figure 8.2   Subprograms and program units (Mod-sub: module subprogram; Int-subs: 
internal subprogram; Ext-sub: external subprogram)  

 
   
MODULE MyMod  
 
INTERFACE  
  SUBROUTINE SWOP( U, V ) 
    REAL U, V 
  END SUBROUTINE 
END INTERFACE 
 
END MODULE 
 

   
which may be accessed with the statement USE MyMod in the calling program. 

The USE statement 
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We have seen that the USE statement allows access to entities in a module. There are two special 
forms of the USE statement which affect the mode of access. 
It may be inconvenient (or impossible) to use the name of a particular entity in a module. For 
example, two independently written modules may each have a subprogram with the same name. Or a 
module entity may have a long and unwieldy name. Module entities may be renamed for use in the 
host program under the new name. E.g. if the module YourMod has a subprogram or variable 
named YourPlonk, it may be renamed for use under the name MyPlonk as follows:  

   
USE YourMod, MyPlonk => YourPlonk 
 

   
The general form is 

   
USE module-name, rename-list  
 

   
where each item in rename-list is of the form 

   
new-name /=>/ original-name 
 

   
Any number of renames may appear in the list. This use is not really recommended, and should only 
be used as a last resort. It would be better to use a text editor to change the original names.  
The other way in which access to a module may be affected is by the ONLY clause in the USE 
statement. E.g. the statement 

   
USE YourMod, ONLY : X, Y 
 

   
allows access to only the entities X and Y of the module. The items following the colon may also be 
renames. 
Each module accessed must appear in a separate USE statement. 

PUBLIC and PRIVATE attributes 
   
As we have seen all entities in a module are accessible by default to any program unit that uses the 
module. However, access may be restricted by specifying a variable with the PRIVATE attribute in 
its declaration:  

   
REAL, PRIVATE :: X 
 

   
Alternatively, a variable or subprogram may be specified with this attribute in a separate statement:  

   
PRIVATE X, SWOP 
 

   
This means that the entities X and SWOP are not available outside the module. They are still 
accessible inside the module, however. 
The PUBLIC attribute (the default) may be similarly specified. 
The statement PUBLIC or PRIVATE with no entity list confirms or resets the default. So the 
statements 

   
PRIVATE 
PUBLIC SWOP 
 

   
make all entities in the module PRIVATE by default, except for SWOP. 
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8.6. Scope 
   

The scope of a label or name is the set of lines where that name or label may be used 
unambiguously. Scoping rules for labels and names are different. 

Scope of labels 
   
The only approved use of labels in this book is in FORMAT statements, which we will only discuss in 
detail in Chapter 10. However, labels can also be used in conjunction with the notorious GOTO 
statement, and to end a DO loop, although such practices are not recommended.  

 
Figure 8.3   A scoping unit  

 
Each subprogram, internal or external, has its own independent set of labels. So, for example, the 
same label may be used in a main program and several of its internal subprograms without 
ambiguity. The scope of a label, therefore, is a main program or a subprogram, excluding any 
internal subprograms that it contains. 

Scope of names 
   
The scope of a name declared in a program extends from the PROGRAM statement to the END 
statement, and does not extend to any external subprograms that may be invoked.  
A name declared in a subprogram has scope from the subprogram's header to its END statement. It 
follows that a name declared in a main or external subprogram has scope in all subprograms which it 
contains.  
The scope of a name declared in an internal subprogram extends throughout that internal 
subprogram only, and does not extend to other internal subprograms. It follows that the scope of a 
name declared in a program or subprogram does not include any internal subprograms in which it is 
redeclared. 
The scope of the name of an internal subprogram, as well as its number and type of arguments, 
extends throughout the containing program or subprogram (and therefore throughout all other 
internal subprograms). 
The scope of a name declared (where the name is that of a variable or a subprogram now) in a 
module extends to any program units that use the module, but obviously excludes any internal 
subprograms in which the name (in the case of a variable) is redeclared. 
Having described the basic elements of scope, it is helpful to make the concept more precise by 
defining a scoping unit (Figure 8.3).  
Some implications follow from this definition: 
• Entities declared in different scoping units are always different, even if they have the same 

names and properties. 
• Within a scoping unit, each named data object, subprogram, derived type, named construct and 

namelist group must have a distinct name, with the exception of generic names of subprograms. 
• The names of program units are global, so program units in the same program may not have the 

same name, neither may they have the names of any entities declared in the program unit. 
   
There is a separate scoping rule for the DO variable of an implied DO (Chapters 9 and 10); it extends 
only to the implied DO. 
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8.7. Arguments 
   

There are a number of important properties of subprogram arguments which are 
summarized in this section for ease of reference. 
We first look at precisely how actual arguments are passed to subprograms. This happens 
in two fundamentally different ways: by reference, or by value. It is necessary to 
understand clearly the difference between these two mechanisms. 

Reference arguments 
   

If the actual argument is a variable it is passed by reference. The term "variable" includes 
an array name, an array element, an array substring, a structure component, or a 
substring; all these concepts are discussed later. 
What actually happens in this case is that the address in memory of the actual argument is 
passed to the subprogram, and the corresponding dummy argument is made to reside at 
the same memory address. In other words, the actual argument and dummy argument both 
refer to the same memory location. As a result, any changes made to the dummy argument 
are reflected in the actual argument on return to the calling program.  
You can therefore think of the value of the actual argument being copied to the dummy 
argument on call, and the value of the dummy argument, which may have been changed, 
being copied back again on return.  
It is bad programming style for dummy arguments of function subprograms to be changed 
in this way; if you need more than one value back from a function rewrite it as a subroutine.  

Value arguments 
   
If an actual argument is a constant or an expression more complex than a variable, it is passed by 
value. 
This means that the value of the actual argument is literally copied to the dummy argument. Changes 
made to the dummy argument are consequently not reflected in the actual argument on return. 
It should be noted that enclosing a variable in parentheses makes it an expression. So the first 
argument of 

   
CALL Plonk( (X), Y ) 
 

   
is passed by value. If this is not what was intended, it can be very difficult to spot. This very subtle 
error can be prevented by giving dummy arguments an intent; this is discussed next. 

Argument intent 
   
Dummy arguments may be specified with an intentI attribute, i.e.whether you intend them to be used 
as input, or output, or both, e.g.  

   
SUBROUTINE PLUNK( X, Y, Z ) 
  REAL, INTENT(IN)    :: X 
  REAL, INTENT(OUT)   :: Y 
  REAL, INTENT(INOUT) :: Z 
  ... 
 

   
If intent is IN, the dummy argument may not have its value changed inside the subprogram. 
If the intent is OUT, the corresponding actual argument must be a variable. Such a specification 
would prevent the last error mentioned above, since a call such as 

   
CALL PLUNK( A, (B), C ) 
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would generate a compiler error—(B) is an expression, not a variable. 
If the intent is INOUT, the corresponding actual argument must again be a variable. 
If the dummy argument has no intent, the actual argument may be a variable or an expression. 
It is recommended that all dummy arguments be given an intent. In particular, all function 
arguments should have intent IN. 
Intent may also be specified in a separate statement, e.g. 

   
INTENT(INOUT) X, Y, Z 
 

   
 

 

Matching type 
   
The type of an actual argument must match the type of the corresponding dummy argument. E.g. if 
PLONK is defined with one real argument the statement 

   
CALL PLONK( 0 ) 
 

   
will cause an error, because the constant 0 is an integer. 

Optional and keyword arguments 
   
Argument lists can get very long; sometimes not all of them are needed. Some or all of the dummy 
arguments may be specified with the OPTIONAL attribute (which may also be used as a statement). 
If the wanted arguments happen to be consecutive, starting from the first dummy argument, they are 
listed normally in the CALL statement. However, the wanted arguments may be scattered, in which 
case a keyword argument list must be provided, after an ordinary (positional) argument list (which 
may be empty). Perhaps an example will clarify the situation.  
The external subroutine Plonk has six arguments, the last four of which are optional. The following 
main program shows the interface block required for Plonk, together with some sample calls: 

   
INTERFACE 
  SUBROUTINE Plonk( DumU, DumV, DumW, DumX, DumY, DumZ ) 
    OPTIONAL DumW, DumX, DumY, DumZ 
  END SUBROUTINE 
END INTERFACE 
... 
 
CALL Plonk( A, B )                                 ! 1 
CALL Plonk( A, B, C, D)                            ! 2 
CALL Plonk( A, B, DumX = D, DumY = E, DumZ = F )   ! 3 
 

   
In the first call, only the non-optional arguments are passed. In the second call, the first two optional 
arguments are required, so the list simply contains the first four arguments. However, the third call 
requires the last three optional arguments, so they must be supplied as a keyword argument list, the 
keyword in each case being the dummy argument name. There may be no further positional 
arguments after the first keyword argument, so the call 

   
CALL Plonk( A, B, DumX = D, E, F )  ! wrong 
 

   
would be invalid. 
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Note that an explicit interface in the form of an interface body must be supplied when an external 
subprogram has optional arguments. However, since modules provide explicit interfaces, this is not 
necessary in the case of module subprograms with optional arguments. 

Arrays as arguments 
This is more appropriate to discuss in Chapters 9 and 15, where we deal with arrays and 
matrices in some depth. 

The SAVE attribute 
   
Local variables in a subprogram do not normally retain their values between calls, unless they have 
the SAVE attribute, e.g. 

   
REAL, SAVE :: Temp 
 

   
Local variables which are initialized automatically have the SAVE attribute. 
A dummy variable may not be specified with SAVE. 

Subprograms as arguments 
   

We have seen that actual arguments of a subprogram may be variables or expressions. A 
subprogram name may also be passed as an argument. This is discussed in Chapter 16, 
where there is an appropriate example. 

8.8. Generic Subprogram Names: Overloading 
   
You may have wondered, having seen how actual and dummy arguments must match exactly in type 
and number, how some of the intrinsic functions manage to accept arguments of more than one type. 
For example, the argument of ABS may be integer, real or even complex! The answer is to use a neat 
trick provided by Fortran 90: overloading. 
Overloading is a general facility provided by many modern programming languages. In this context, 
it is the ability to call a number of different subprograms with the same generic name. In principle, 
subprograms, with different specific names, are written for different types of arguments; their 
specific names are then overloaded by a single generic name for all of them. The generic name is 
called; the compiler decides which specific name to invoke behind the scenes according to the type 
of the actual arguments.  
Consider again the external subroutine SWOP( X, Y ) of Section 8.3. It accepts only real 
arguments. We can make it accept integer arguments as well, in a number of ways. 
One is to write two separate external subroutines, SwopReals and SwopIntegers, with real and 
integer arguments respectively, e.g.  

   
SUBROUTINE SwopReals( X, Y ) 
    REAL X, Y, Temp 
    Temp = X 
    X = Y 
    Y = Temp 
END SUBROUTINE SwopReals 
 

   
and   

   
SUBROUTINE SwopIntegers( X, Y ) 
    INTEGER X, Y, Temp 
    Temp = X 
    X = Y 
    Y = Temp 
END SUBROUTINE SwopIntegers 
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Since these are to be external subprograms, each must reside in a separate file and be compiled 
separately. The overloading can then be done in the main program, by means of an INTERFACE 
statement, which specifies the generic name (SWOP), and interface bodies for the two overloaded 
subroutines: 

   
PROGRAM Main 
 
INTERFACE SWOP 
  SUBROUTINE SwopReals( X, Y ) 
    REAL X, Y, Temp 
  END SUBROUTINE SwopReals 
  SUBROUTINE SwopIntegers( X, Y ) 
    INTEGER X, Y, Temp 
  END SUBROUTINE SwopIntegers 
END INTERFACE 
 
REAL A, B 
INTEGER I, J 
... 
 
CALL SWOP( A, B ) 
CALL SWOP( I, J ) 
... 
 

   
A specific name may be the same as the generic name if this is more convenient. 
A generic name may be the same as another accessible generic name, in which case all subprograms 
with this generic name are invoked through it. In this way, the intrinsic functions may be extended to 
accept arguments of a derived type. 
If you want to overload a module subprogram, the interface is already explicit, so it is incorrect to 
specify an interface body. Instead, you must include the statement 

   
MODULE PROCEDURE procedure-names 
 

   
in the interface block, where procedure-names are the procedures (subprograms) to be overloaded. 
So if the subroutines SwopReals and SwopIntegers were defined in a module, the interface 
block would be 

   
INTERFACE SWOP 
  MODULE PROCEDURE SwopReals, SwopIntegers 
END INTERFACE 
 

   
This interface block could be placed in the module itself. Try it. 
We will see later how to overload intrinsic operators and the assignment in order to extend these 
operations to derived types. 

8.9. Stubs 
   
A large program will have many subprograms. To plan and code them all before compiling is asking 
for trouble. A useful trick is to use stubs, which define the subprogram names, but do nothing (at 
first). Then fill the stubs in one at a time, compiling after each fill in. That way, it's much easier to 
catch all the compiler errors. You can initially define the subprograms as internal, with all local 
variables declared, moving them out to modules as they are completed. This obviates having to 
recompile everything as more and more stubs are filled in. E.g. 

   
PROGRAM BigOne 
 
IMPLICIT NONE 
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CALL FIRST 
CALL LAST 
 
CONTAINS 
  SUBROUTINE FIRST 
    PRINT*, 'First here' 
  END SUBROUTINE 
 
  SUBROUTINE LAST 
    PRINT*, 'Last here' 
  END SUBROUTINE 
END PROGRAM BigOne 
 

   
It may not do much at this stage, but at least it compiles! 

8.10. Recursion 
   
Many mathematical functions (and more general procedures) may be defined recursively, i.e. in 
terms of simpler cases of themselves. For example, the factorial function may be defined recursively 
as 

( )n n n! * != −1  
given that 1! is defined as 1. 
To implement this definition as a function, it is necessary for the function to call itself. Normally in 
Fortran 90 this is not possible. However, if the RECURSIVE keyword is prefixed to the function 
header, the function may call itself. If the call is direct (i.e. the function name occurs in the body of 
the function definition) a RESULT clause must be added to the function header, in order to use a 
different (local) name for the function. This is illustrated below, where the function Factorial is 
defined recursively:  

   
IMPLICIT NONE  
INTEGER I  
 
I = 10 
PRINT*, I, Factorial(I) 
 
CONTAINS 
  RECURSIVE FUNCTION Factorial( N ) RESULT (Fact) 
    INTEGER Fact, N 
    IF( N == 1 ) THEN 
      Fact = 1 
    ELSE 
      Fact = N * Factorial( N-1 ) 
    END IF 
  END FUNCTION 
END 
 

   
The RESULT clause is needed because the name Factorial may not appear on the left-hand side 
of an assignment. Note that the name Factorial must not be declared in the INTEGER statement: 
the declaration of Fact is sufficient. 
Recursion is an advanced topic, although it appears deceptively simple. You may wonder how the 
recursive Factorial function really works. It is important to distinguish between the function 
being called and executed. When the initial call takes place N has the value 10, so the ELSE clause 
in Factorial is evaluated. However, the value of Factorial(9) is not known at this stage, so 
a copy is made of all the statements in the function which will need to be executed once the value of 
Factorial(9) is known. The reference to Factorial(9) makes Factorial call itself, this 
time with a value of 9 for N. Again the ELSE clause is evaluated, and again Fortran 90 discovers that 
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it doesn't know the value of Factorial(8). So another (different) copy is made of all the 
statements that will need to be executed once the value of Factorial(8) is known. And so each 
time Factorial is called, separate copies are made of all the statements yet to be executed. 
Finally, the compiler finds a value of N (1) for which it knows the value of Factorial, so at last it 
can begin to execute (in reverse order) the pile of statements which have been dammed up inside the 
memory.  
This discussion illustrates the point that recursion should be used carefully. While it is perfectly in 
order to use it in a case like this, it can chew up huge amounts of computer memory and time. 
It should be mentioned that a RESULT clause may be used optionally when a function is not defined 
recursively—in other words, it is never wrong to have a RESULT clause. Here it is shown with a 
non-recursive version of Factorial: 

   
IMPLICIT NONE 
INTEGER I 
 
DO I = 1, 10 
  PRINT*, I, Factorial( I ) 
END DO 
 
CONTAINS 
  FUNCTION Factorial( N ) RESULT (Fact)  
    INTEGER Fact, I, N 
    Fact = 1 
    DO I = 2, N 
      Fact = I * Fact 
    END DO 
  END FUNCTION 
END 
 

   
When a subroutine calls itself directly, the keyword RECURSIVE must also be used. In the example 
below, Factorial is rewritten as a recursive subroutine. This is a little more subtle. 

   
IMPLICIT NONE 
INTEGER F, I 
 
DO I = 1, 10 
  CALL Factorial( F, I ) 
  PRINT*, I, F 
END DO 
 
CONTAINS 
  RECURSIVE SUBROUTINE Factorial( F, N )  
    INTEGER F, N 
    IF (N == 1) THEN 
      F = 1 
    ELSE  
      CALL Factorial( F, N-1 ) 
      F = N * F 
    END IF 
  END SUBROUTINE 
END 
 

   
When I first wrote this program, I put N instead of N-1 by mistake as the argument in the recursive 
call. Consequently, the program could not end, since Factorial was always called with N having 
the value of 10. The "escape statement", F = 1 could never be executed. Be warned! 
The subtlety in this example is working out whether to place the statement F = N * F before or 
after the recursive call to Factorial. Try running the program with F = N * F before the call 
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to Factorial. The difference is that now F = N * F is executed on each call, instead of a copy 
being made. As a result, the last execution sets F to 1, and this is its value on return.  
There are more examples of recursive functions in the exercises. A recursive subroutine is used to 
implement the Quick Sort algorithm in Chapter 9. 

Chapter 8 Summary 
   
• Large programs should be broken down into subprograms (procedures) to perform simpler 

tasks. 
• Subprograms may be internal or external. 
• External subprograms are compiled separately from the main program. 
• Module subprograms are subprograms which have been collected into separately compiled 

modules (libraries). 
• A program unit is a main program, external subprogram, or module. 
• Internal subprograms are contained within program units. 
• Subprograms consist of functions or subroutines. 
• A function returns a value, which has a type. 
• A function is invoked by referencing its name. 
• No value is attached to the name of a subroutine. 
• A subroutine is invoked with a CALL statement. 
• Dummy arguments are used in a subprogram's declaration, actual   arguments in its invocation. 
• The compiler provides explicit interfaces to intrinsic, internal and module subprograms. 
• An EXTERNAL statement in the calling program is sufficient to link to an external subprogram 

in normal circumstances. 
• An interface block may always be used to provide an explicit interface to an external 

subprogram; there are situations when one must be used (Figure 8.1). 
• A module may contain declarations, specification statements and subprograms. 
• Entities in a module specified with the PRIVATE attribute may only be accessed within the 

module. Entities are public by default. 
• The scope of a name or label is the set of lines where it may be used unambiguously. Scoping 

rules for labels and names are different. 
• Actual arguments may be passed to subprograms by reference or by value. An argument passed 

by reference may be changed on return. Constants or expressions are passed by value. 
Parentheses around a variable name make it an expression. 

• Dummy arguments may be specified with the INTENT attribute: IN (may not be changed in the 
subprogram), OUT (actual argument must be a variable so that it can be changed), or INOUT 
(actual argument must be a variable). All dummy arguments should be given an intent.  

• Function dummy arguments should have intent IN.  
• Dummy arguments may be specified OPTIONAL. Wanted arguments may be provided in a 

keyword argument list. External subprograms with optional arguments must have an explicit 
interface provided by an interface body. 

• An interface may be used to overload specific subprogram names with a generic name. 
• Stubs (empty subprograms) should be used when developing large programs. 
• Subprograms may call themselves directly if they are declared as RECURSIVE. A recursive 

function must have a RESULT clause in its header to return its value. 

Chapter 8 Exercises 
   

8.1      Write a program which uses the Newton quotient  
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to estimate the first derivative of ( )f x x= 3
 at x = 1, using successively smaller values of h: 1, 

10 1−
, 10 2−

, etc. Use a function subprogram for f(x).  
8.2      Write your own Fortran function to compute the exponential function directly from the 
Taylor series: 

   
 

   
   

 
   
The series should end when the last term is less than 10 6−

. Test your function against the intrinsic 
function EXP.  
8.3      Write a function Bin( N, R ) which returns the binomial coefficient,break n!/r!(n-r)!, as 
defined in Chapter 6.  
8.4      Write a subroutine  

   
QUAD( X1, X2, A, B, C, J ) 
  REAL INTENT(OUT)    :: X1, X2  
  REAL INTENT(IN)     :: A, B, C 
  INTEGER INTENT(OUT) :: J 
 

   
which computes the roots of the quadratic equation ax bx c2 0+ + = . The arguments A, B and C 
(which may take any values) are the coefficients of the quadratic, and X1, X2 are the two roots (if 
they exist), which may be equal. See Figure 4.5 for the structure plan. J is a "flag" which must be set 
by the procedure as follows: 
–1: complex roots (discriminant < 0); 

 0: no solution (a = b = 0, c ≠ 0); 

 1: one root (a = 0, b ≠ 0, so the root is–c/b); 
 2: two roots (which could be equal); 
 99: any x is a solution (a = b = c = 0). 
8.5      If a random variable X is distributed normally with zero mean and unit standard deviation, the 

probability that 0 ≤ ≤X x  is given by the standard normal function ( )Φ x
. This is usually looked 

up in tables, but it may be approximated as follows: 
   

 
   

   
 

   

where a = 0.4361836, b =–0.1201676, c = 0.937298, ( )r x= −exp .0 5 22 π
, and 

( )t x= +1 1 0 3326.
.  

Write a function to compute φ(x), and use it in a program to write out its values for 0 ≤ x ≤ 4 in 
steps of 0.1.  Check: φ(1) = 0.3413. 
8.6      The Fibonacci numbers are generated by the sequence 
1, 1, 2, 3, 5, 8, 13, ... 
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Can you work out what the next term is? Write a recursive function F(N) to compute the Fibonacci 

numbers F0 to F20 , using the relationship  
   

 
   
   

 
   
given that F F0 1 1= = .  

8.7      The first three Legendre polynomials are ( )P x0 1=
, ( )P x x1 =

, and 

( ) ( )P x x2
23 1 2= −

. There is a general recurrence formula for Legendre polynomials, by which 
they are defined recursively: 

   
 
   

   
 

   
Define a recursive Fortran function P(N, X) to generate Legendre polynomials, given the form of 
P0  and P1. Use your function to compute P(2, X) for a few values of X, and compare your 

results with those using the analytic form of ( )P x2  given above.  
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Chapter 9 Introduction 
   
In real programs we often need to handle a large amount of data in the same way, e.g. to find the 
mean of a set of numbers, or to sort a list of numbers or names, or to analyse a set of students' test 
results, or to solve a system of linear equations. To avoid an enormously clumsy program, where 
perhaps hundreds of variable names are needed, we can use subscripted variables, or arrays. These 
may be regarded as variables with components, rather like vectors or matrices. They are written in 
the normal way, except that the subscripts are enclosed in parentheses after the variable name, e.g. 
X(3), Y(I + 2 * N) 
Fortran 90 has an extremely powerful set of array features, which Fortran 77 users will be both 
surprised and delighted to discover.  
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9.1. Mean and Standard Deviation 
   
To illustrate the basic principles, let's compute the sample mean and standard deviation of a set of N 
observations. The mean is defined as 

   
 

   
   

 
   
where Xi is the ith observation. The standard deviation s is defined as 

   
 

   
   

 
   
The next program computes these two quantities from data read from the disk file DATA. The first 
item of data in the file is the value of N. This is followed by exactly N observations—all on separate 
lines. 

   
IMPLICIT NONE 
 
INTEGER              :: I, N 
REAL                 :: Std = 0 
REAL, DIMENSION(100) :: X 
REAL                 :: XBar = 0 
 
OPEN (1, FILE = 'DATA') 
 
READ (1, *) N 
DO I = 1, N 
  READ (1, *) X(I) 
  XBar = Xbar + X(I) 
END DO 
 
XBar = XBar / N 
 
DO I = 1, N 
  Std = Std + (X(I) - XBar) ** 2 
END DO 
 
Std = SQRT( Std / (N - 1) ) 
PRINT*, 'Mean: ', XBar 
PRINT*, 'Std deviation: ', Std 
 

   
Try this with some sample data (each number on a separate line): 
10 5.1 6.2 5.7 3.5 9.9 1.2 7.6 5.3 8.7 4.4 
You should get a mean of 5.76 and a standard deviation of 2.53 (to two decimal places). 
The DIMENSION(100) attribute in the type declaration statement for the array X sets aside 100 
memory locations, with names X(1), X(2), ..., X(100). However, the sample data above consists 
of only 10 numbers, so only the first 10 locations are used. Note that the value of N must be read 
first (and must be correct), before the N values may be read. 
After the READ is complete, the memory area where the array is stored looks like this: 

 
X(1) X(2) X(3) ... X(10) 
5.1  6.2  5.7 ...    4.4 
Now that the data are safely stored in the array, they may be used again, simply by referencing the 
array name X with an element number, e.g. X(3). So the sum of the first two elements may be 
computed as 
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SUM = X(1) + X(2) 
 

   
This facility is necessary for computing s according to the formula above—the data must all be read 
to compute the mean, and the mean must be computed before all the data is re-used to compute s. 
(To be fair, there is another way of calculating the standard deviation, which doesn't require the use 
of an array:  

   
 

   
   

 
   
As an exercise, rewrite the program without an array, reading all the data into a single variable X.) 
Having each data value on a separate line in the file is rather cumbersome —this is required by the 
separate execution of each READ (1, *) X(I) in the DO loop. Fortran allows the use of an 
implied DO to read or print all or part of an array. Simply replace the entire DO construct in the 
program with 

   
READ (1, *) ( X(I), I = 1, N ) 
 

   
Note that the syntax requires parentheses around the implied DO. 

9.2. Basic Rules and Notation 
   
The array is our first example in Fortran 90 of a compound object, i.e. an object which can have 
more than one value. Arrays can be fairly complicated creatures. Only the basics are mentioned 
here; more advanced features will be introduced later.  
The statement 

   
REAL, DIMENSION(10) :: X 
 

   
declares X to be an array (or list) with 10 real elements, denoted by X(1), X(2), ..., X(10). The 
number of elements in an array is called its size (10 in this case). Each element of an array is a scalar 
(single-valued). 
Array elements are referenced by means of a subscript, indicated in parentheses after the array 
name. The subscript must be an integer expression—its value must fall within the range defined in 
the array declaration. So 

   
X(I+1) 

   
is a valid reference for an element of X as declared above, as long as (I+1) is in the range 1–10. A 
compiler error occurs if the subscript is out of range. 
By default arrays have a lower bound of 1 (the lowest value a subscript can take). However, you can 
have any lower bound you like: 

   
REAL, DIMENSION(0:100) :: A 
 

   
declares A to have 101 elements, from A(0) to A(100). The upper bound must be specified; if the 
lower bound is missing it defaults to 1.  
An array may have more than one dimension. The bounds of each dimension must be specified: 

   
REAL, DIMENSION(2,3) :: A 
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A is a two-dimensional array. The number of elements along a dimension is called the extent in that 
dimension. A has an extent of 2 in the first dimension, and an extent of 3 in the second dimension 
(and a size of 6). Fortran allows up to seven dimensions. The number of dimensions of an array is its 
rank, and the sequence of extents is its shape. The shape of A is (2, 3), or (2x3) in matrix notation. A 
scalar is regarded as having a rank of zero. We will concentrate mainly on one-dimensional arrays in 
this chapter—it is more appropriate to discuss two-dimensional arrays in the context of matrices 
(Chapter 14). 
The DIMENSION attribute is optional. It provides a default DIMENSION optionalshape for 
variables whose names are not followed by a shape: 

   
REAL, DIMENSION(5) :: A, B(2,3), C(10)    ! only A is (1:5) 
INTEGER I(10), K(4,4), L(5)               ! all different 
 

   
An array subscript can be used as the control variable in a DO loop to generate array elements. The 
following code assigns the first five even integers to the ten elements of X (assumed correctly 
declared): 

   
DO I = 1, 5 
  X(I) = 2 * I 
END DO 
 

   
The same effect can be achieved in a number of different ways with an array constructor:  

   
X = (/ 2, 4, 6, 8, 10 /) 
 

   
or 

   
X = (/ (I, I = 2, 10, 2) /) 
 

   
A constant array may be declared in this way, with the PARAMETER attribute.  
An entire array may be read: 

   
READ*, X 
 

   
Of course, the exact number of data values must be supplied. An entire array may be assigned a 
scalar value: 

   
X = 1 
 

   
This is a special case of array assignment, which we will encounter again later. 

Reading an unknown amount of data 
   
The implied DO together with the IOSTAT specifier in READ provides a neat way of reading an 
unknown amount of data into an array, where only the maximum size of the array is given:  

   
INTEGER, PARAMETER   :: MAX = 100  
REAL, DIMENSION(MAX) :: X  
 
OPEN (1, FILE = 'DATA') 
READ( 1, *, IOSTAT = IO ) ( X(I), I = 1, MAX ) 
   
IF (IO < 0) THEN 
  N = I - 1 
ELSE 
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  N = MAX 
END IF 
 
PRINT*, ( X(I), I = 1, N ) 
... 

   
The data may be arranged in any format in the input file. Note that I is one greater than the number 
of values read: it is incremented in the implied DO before the end-of-fileend-of-filecondition is 
detected. Note also that on normal exit from the implied DO its value would be MAX+1. 

9.3. Arrays as Subprogram Arguments 
   
An array may be passed as an argument to a subprogram in a number of ways. The neatest way is 
shown in the next program, where the calculation of the mean and standard deviation is relegated to 
the subroutine Stats: 

   
IMPLICIT NONE 
 
INTEGER              :: I, N 
REAL, DIMENSION(100) :: X 
REAL                 :: Std = 0 
REAL                 :: XBar = 0 
 
OPEN (1, FILE = 'DATA') 
READ (1, *) N, (X(I), I = 1, N) 
CALL Stats( X, N, XBar, Std ) 
PRINT*, 'Mean:          ', XBar 
PRINT*, 'Std deviation: ', Std 
 
CONTAINS 
  SUBROUTINE Stats( Y, N, YBar, S ) 
    REAL, DIMENSION(:), INTENT(IN) :: Y 
    REAL, INTENT(INOUT)            :: S, YBar 
    INTEGER, INTENT(IN)            :: N 
 
    INTEGER  I 
 
    YBar = 0; S = 0 
 
    DO I = 1, N                       
      YBar = Ybar + Y(I)              
    END DO                            
                                      
    YBar = YBar / N                   
                                      
    DO I = 1, N                       
      S = S + (Y(I) - YBar) ** 2  
    END DO                            
                                      
    S = SQRT( S / (N - 1) )       
  END SUBROUTINE 
END 
 

   
The compiler requires that the shape of actual and dummy arguments agree. The declaration 

   
REAL, DIMENSION(:), INTENT(IN) :: Y 
 

   
of the dummy argument makes it an assumed-shape, i.e. it takes on whatever shape is imposed by 
the actual argument. The complete syntax for the dimension in this case is 

   
[lower bound]: 
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The lower bound defaults to 1 if omitted. Take careful note that the shape is passed, not bounds. So 
in this example,  

   
REAL, DIMENSION(0:), INTENT(IN) :: Y 
 

   
would result in X(I) corresponding to Y(I-1).  
If the lower bounds are the same in the declaration of the actual and dummy arguments, the 
correspondence will be exact.  
Note that if Stats is compiled separately as an external subprogram, an explicit interface will have 
to be provided in the calling program, e.g.  

   
INTERFACE  
  SUBROUTINE Stats( Y, N, YBar, S ) 
    INTEGER, INTENT(IN)            :: N 
    REAL, DIMENSION(:), INTENT(IN) :: Y 
    REAL, INTENT(INOUT)            :: S, YBar   
  END SUBROUTINE 
END INTERFACE 

9.4. Allocatable (Dynamic) Arrays 
   
The program in Section 9.2 reads an unknown amount of data into an array. However, the maximum 
size of the array must be declared. In programs which have a large demand on memory this could be 
wasteful. 
A more memory efficient solution, not possible in earlier versions of Fortran, is to use dynamic 
memory. The types of variables we have seen so far have all been static variable, although this was 
never mentioned. This means that when the variable is declared, the compiler assigns it to a certain 
address in memory (with a fixed amount of storage space), and there it stays as long as the program 
is running. By contrast, chunks of dynamic memory are used only when needed, while the 
programming is running, and then discarded. This is often a more efficient way of using memory.  
A variable is specified as dynamic with the ALLOCATABLE attribute. In particular, a one-
dimensional array may be specified thus: 

   
REAL, DIMENSION(:), ALLOCATABLE :: X 
 

   
Although its rank is specified, it has no size until it appears in an ALLOCATE statement, such as 

   
ALLOCATE( X(N) ) 
 

   
When it is no longer needed, it may be deallocated: 

   
DEALLOCATE( X ) 
 

   
thus freeing up the memory used. 
The following program extract shows how to use allocatable arrays, as these beasts are called, to 
read an unknown amount of data, which unfortunately must be supplied one item per line because of 
the way READ works. 

   
REAL, DIMENSION(:), ALLOCATABLE :: X, OldX 
REAL      A 
INTEGER   IO, N 
 
ALLOCATE( X(0) )                 ! size zero to start with? 
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N = 0 
OPEN( 1, FILE = 'DATA' ) 
 
DO  
  READ(1, *, IOSTAT = IO) A 
  IF (IO < 0 ) EXIT 
    N = N + 1 
    ALLOCATE( OldX( SIZE(X) ) ) 
    OldX = X                     ! entire array can be assigned 
    DEALLOCATE( X )             
    ALLOCATE( X(N) )            
    X = OldX                    
    X(N) = A                    
    DEALLOCATE( OldX )          
END DO 
 
PRINT*, ( X(I), I = 1, N ) 
... 
 

   
We would like to be able to increase the size of X for each value read. However, before X can be 
allocated with a larger size, it must be deallocated—losing all the previous data read. So another 
dynamic array, OldX must be used to take care of this. 
Note the following important features: 
• an array may have zero size—this is often convenient; 
• entire arrays may be assigned; 
• an array which is currently allocated may not be allocated again; 
• an array which is deallocated must be currently allocated. 

   
You may be tempted to write this as a subroutine. However, dummy not ALLOCATABLE may not 
have the ALLOCATABLE attribute. 

9.5. Top of the Class 
   
The program in Chapter 5 to find the student with the highest mark in a class assumes that there is 
only one top student. If there could be more than one name at the top, you can use an array to make 
a list of the top names. 

   
IMPLICIT NONE 
 
INTEGER                      :: I           ! student counter 
INTEGER                      :: IO          ! value of IOSTAT 
INTEGER, PARAMETER           :: MAX = 100   ! maximum class size 
INTEGER                      :: NumTop = 1  ! must be at least 1 
REAL                         :: Mark        ! general mark  
REAL                         :: TopMark = 0 ! can't be less than 0 
CHARACTER*15                 :: Name        ! general name 
CHARACTER*15, DIMENSION(MAX) :: TopName     ! top student 
 
OPEN( 1, FILE = 'MARKS' ) 
 
DO  
  READ( 1, * , IOSTAT = IO) Name, Mark 
  IF (IO < 0) EXIT 
    IF (Mark > TopMark) THEN        ! new top mark here       
      TopMark = Mark                ! reset the top mark      
      NumTop = 1                    ! only one at the top now 
      TopName(1) = Name             ! here she is             
    ELSE IF (Mark == TopMark) THEN  ! tie for top mark here 
      NumTop = NumTop + 1           ! advance top counter      
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      TopName(NumTop) = Name        ! add his name to the list 
    END IF 
END DO 
 
DO I = 1, NumTop 
  PRINT*, TopName(I), TopMark 
END DO 
END 

   
To understand what the program does run through it by hand (make a list of the variables, and enter 
their values) with the following data: 

   
Botha       58 
Essop       72 
Jones       72 
Murray      72 
Rogers      90 
Tutu        90 

   
Then run it on the computer as a check. Note that at the end the name Murray will still be in the 
array, in TopName(3), but his name will not be printed because NumTop has been reset to 2. 
You could try to rewrite this program with TopName as an allocatable array to save memory space. 

9.6. Sorting a List: The Bubble Sort 
   
One of the standard applications of arrays is sorting a list of numbers into, let us say, ascending 
order. The basic idea is that the unsorted list is read into an array. The numbers are then ordered by a 
process which essentially passes through the list many times, swopping consecutive elements that 
are in the wrong order, until all the elements are in the right order. Such a process is called a Bubble 
Sort, because the smaller numbers rise to the top of the list, like bubbles of air in water. (In fact, in 
the version shown below, the largest number will "sink" to the bottom of the list after the first pass, 
which really makes it a "Lead Ball" sort.) There are many other methods of sorting, which may be 
found in most textbooks on computer science (one of them, the Quick Sort, is given in the next 
section). These are generally more efficient than the Bubble Sort, but its advantage is that it is by far 
the easiest method to program. A structure plan for the bubble sort is as follows: 
 1. Initialize N (length of list) 
 2.  Read the list X 
 3. Repeat N - 1 times with counter K: 
 Repeat N-K times with counter J: 
    If Xj > Xj+1 then 
       Swop the contents of Xj and Xj+1 
 4. Print the list X, which is now sorted. 

   
As an example, consider a list of five numbers: 27, 13, 9, 5 and 3. They are initially read into the 
array X. Part of the computer memory for this problem is sketched in Table 9.1. Each column shows 
the list during each pass. A stroke in a row indicates a change in that variable during the pass as the 
program works down the list. The number of tests (Xj > Xj+1?) made on each pass is also shown in 
the table. Work through the table by hand with the structure plan until you understand how the 
algorithm works.  
 
Figure 9.1: Memory during a Bubble Sort  

   
 1st pass 2nd pass 3rd pass  4th pass  
  X(1): 27/13 13/9 9/5 5/3  
  X(2): 13/27/9 9/13/5 5/9/3 3/5   
  X(3): 9/27/5 5/13/3 3/9 9    
  X(4): 5/27/3 3/13 13 13   
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  X(5): 3/27 27 27 27  
 4 tests 3 tests 2 tests 1 test  
Sorting algorithms are compared by calculating the number of tests they carry out, since this takes 
up most of the execution time during the sort. On the Kth pass of the Bubble Sort there are exactly 
N-K tests, so the total number of tests is [1 + 2 + 3 + dots + (N-1) = N(N-1)/2] (approximately N 2/2 
for large N). For a list of five numbers there are therefore 10 tests, but for 10 numbers there are 45 
tests. The computer time needed goes up as the square of the length of the list.  
The program below uses the subroutine Bubble_Sort to sort 100 random numbers. It departs 
slightly from the structure plan above, which will make N-1 passes, even if the list is sorted before 
the last pass. Since most real lists are partially sorted, it makes sense to check after each pass if any 
swops were made. If none were, the list must be sorted, so unnecessary (and therefore time-wasting) 
tests can be eliminated. In the subroutine, the logical variable Sorted is used to detect when the list 
is sorted, and the outer loop is coded instead as a non-deterministic DO WHILE loop. 

   
IMPLICIT NONE 
INTEGER, PARAMETER  :: N = 100    ! size of list 
REAL, DIMENSION(N)  :: List       ! list to be sorted 
INTEGER I                         ! counter 
REAL R                            ! random number 
 
DO I = 1, N 
  CALL Random_Number( R ) 
  List(I) = INT( N * R + 1 )      ! random integers in range 1-N 
END DO 
 
PRINT 10, List                    ! print unsorted list 
10  FORMAT( 13F6.0 ) 
 
CALL Bubble_Sort( List )       ! sort 
 
PRINT 10, List                    ! print sorted list 
 
CONTAINS 
  SUBROUTINE Bubble_Sort( X ) 
    REAL, DIMENSION(:), INTENT(INOUT) :: X    ! list 
    INTEGER :: Num                            ! size of list 
    REAL Temp                                 ! temp for swop 
    INTEGER J, K                              ! counters 
    LOGICAL Sorted           ! flag to detect when sorted 
 
    Num = SIZE(X) 
    Sorted = .FALSE.         ! initially unsorted  
    K = 0                    ! count the passes 
     
    DO WHILE (.NOT. Sorted) 
      Sorted = .TRUE.             ! they could be sorted     
      K = K + 1                   ! another pass             
      DO J = 1, Num-K             ! fewer tests on each pass 
        IF (X(J) > X(J+1)) THEN   ! are they in order? 
          Temp = X(J)             ! no ... 
          X(J) = X(J+1) 
          X(J+1) = Temp 
          Sorted = .FALSE.        ! a swop was made 
        END IF 
      END DO 
    END DO  
 
  END SUBROUTINE 
END 
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Bubble_Sort is written here as an internal subroutine, but will run as it stands as an external 
subroutine or in a module.eject 

9.7. Sorting a List: Quick Sort 
   
Try sorting 1000 numbers with the Bubble Sort. It takes quite a while. Sorting 10,000 numbers (a 
not inconceivable problem) would take about 100 times longer. 
The famous Quick Sort algorithm, invented by C.A.R. Hoare in 1960, is much faster. It is based on 
the "divide and conquer" approach: to solve a big problem, break it down into smaller subproblems, 
and break each subproblem down in the same way, until they are small enough to solve. As someone 
has remarked, "Every problem has a smaller problem inside, waiting to get out." 
How do we break our sorting problem down into manageable subproblems? Well, have a look at the 
following list: 
 

Number: 19 30 14 28 8 32 72 41 87 33 
Postion: 1 2 3 4 5 6 7 8 9 10 
The value 32 in position 6 has a special property. All the values to the left of it are less than 32, 
while all the values to the right of it are greater than 32. The value 32 is said to partition the sorting 
problem into two subproblems: a left subproblem, and a right subproblem. These may each be sorted 
separately, because no value in the left subproblem can ever get into the right subproblem, and vice 
versa. Furthermore, the value 32 is in the correct position in the right subproblem —it is the smallest 
value there.  
You might think it was a lucky shot that 32 neatly partitioned the list to start with. The brilliance of 
the algorithm is that given any list, we can always create a partition with the left-most value, without 
too much difficulty. 
Have a look now at a rearrangement of the list: 
 

32 19 41 14 28 8 72 30 87 33 
L L1       R1 R 
The extreme ends are labelled L and R. We are going to partition the list with the value 32, currently 
at position L. We define counters L1 and R1 with initial values as shown. 
The idea now is to move L1 to the right, while making sure that 
• every value to the left of position L1 leq partition value 
• and then to move R1 to the left, while making sure that 
• every value to the right of position R1 > partition value. 

   
Doing this gets us to this situation: 
 

32 19 41 14 28 8 72 30 87 33 
L  L1     R1  R 
What now? There seems to be a deadlock. But no, just swop the value in position L1 (41) with the 
value in position R1 (30): 

 
32 19 30 14 28 8 72 41 87 33 
L  L1     R1  R 
We can now carry on moving L1 and R1, subject to the rules stated above, until we get to this scene: 

 
32 19 30 14 28 8 72 41 87 33 
L     R1 L1   R 
However, the situation now is different. L1 and R1 have crossed, so we must have found the partition 
point: it is at position R1. All that remains to be done now is to swop the values at L (32) and R1 (8), 
giving us a partitioned array, with 32 as the partition: 
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8 19 30 14 28 32 72 41 87 33 
L     R1 L1   R 
We can now partition any problem with its left-most value. So the resulting subproblems can be 
partitioned in the same way. We simply continue partitioning subproblems, until the subproblems 
have only 1 member, which must be sorted! 
This type of "divide and conquer" algorithm is what recursion was made for. The following program 
implements it recursively. 

   
IMPLICIT NONE 
INTEGER, PARAMETER  :: N = 100    ! size of list 
REAL, DIMENSION(N)  :: List       ! list to be sorted 
INTEGER I                         ! counter 
REAL R                            ! random number 
 
DO I = 1, N 
  CALL RANDOM_NUMBER( R ) 
  List(I) = INT( N * R + 1 )      ! random integers in range 1-N 
END DO 
 
PRINT 10, List                    ! print unsorted list 
10  FORMAT( 13F6.0 ) 
 
CALL Quick_Sort( List, 1, N )     ! quick sort now 
 
PRINT 10, List                    ! print sorted list 
 
CONTAINS 
  RECURSIVE SUBROUTINE Quick_Sort( X, L, R ) 
    REAL, DIMENSION(:), INTENT(INOUT) :: X    ! list 
    INTEGER, INTENT(IN)               :: L, R ! left, right bounds 
    INTEGER L1, R1                            ! etc 
 
    IF (L < R)THEN 
      L1 = L 
      R1 = R 
 
      DO 
        DO WHILE (L1 < R .and. X(L1) <= X(L))  ! shift L1 right 
          L1 = L1 + 1 
        END DO 
         
        DO WHILE (L < R1 .and. X(R1) >= X(L))  ! shift R1 left 
          R1 = R1 - 1 
        END DO 
         
        IF (L1 < R1) CALL Swop( X(L1), X(R1) ) ! swop 
        IF (L1 >= R1) EXIT                     ! crossover -  
                                               ! partition  
      END DO 
 
      CALL Swop( X(L), X(R1) )      ! partition with X(L) at R1           
      CALL Quick_Sort( X, L, R1-1 ) ! now attack left subproblem          
      CALL Quick_Sort( X, R1+1, R ) ! don't forget right subproblem       
    END IF 
  END SUBROUTINE Quick_Sort 
 
  SUBROUTINE Swop( A, B ) 
    REAL, INTENT(INOUT) :: A, B 
    REAL                :: Temp 
 
    Temp = A 
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    A = B 
    B = Temp 
 
  END SUBROUTINE Swop 
END 
 

   
Note that the swopping is implemented as a subroutine. If you rewrite Quick_Sort as an external 
subroutine, Swop could be internal to it. You should try working through the program by hand with 
the sample array in the figures. 
Try the Quick Sort out on 1000 numbers. You should be impressed! It has been proved that Quick 
Sort needs approximately Nlog2N comparisons as opposed to the Bubble Sort's N 2/2. 
You may be interested to learn that Quick Sort slows down tremendously if the list is already nearly 
sorted (try it on a sorted list). However, it will work just as fast in this case if you choose a value 
near the middle of the subproblem for the partition value, instead of the left-most value. Happy 
sorting! 

9.8. More Array Features 
   

Fortran 90 has some powerful new array features, which are ideally suited to numerical 
analysis applications. They are summarized in this section. 

Array constructors 
   
A one-dimensional constant array may be constructed from a list of element values enclosed 
between the separators (/ and /). E.g. 

   
(/ 2, 4, 6, 8, 10 /) 
 

   
is an array of rank one with five elements.  
The general form of an array constructor is 
(/ array constructor value list /) 

   
where each value is either an expression, or an implied DO of the form 
( value list, variable = expr1, expr2 [, expr3] ) 

   
The parameters of the implied DO operate in the same way as those of the DO. E.g. 

   
(/ 2, 4, (I, I = 4, 10, 2) /) 
 

   
is the same as 

   
(/ 2, 4, 6, 8, 10 /) 
 

   
The optional parameter expr3 is sometimes called the stride in the context of an implied DO. An 
implied DO may be nested inside another, making 

   
(/ ((I, I = 1, 2), J = 1, 3) /) 
 

   
the same as 

   
(/ 1, 2, 1, 2, 1, 2 /) 
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If the list is empty, a zero-sized array is constructed. The scope of the implied DO variable is 
restricted to the implied DO—it will not affect the value of another variable of the same name 
elsewhere in the scoping unit of the constructor. 
A constant array of rank greater than one can be constructed from an array constructor using the 
RESHAPE intrinsic function. E.g. 

   
RESHAPE( SOURCE = (/ 1, 2, 3, 4, 5, 6 /), SHAPE = (/ 2, 3 /) ) 

   
forms the (2 times 3) matrix 

   
 
   
   

 
   

Array sections 
   
A subarray, called a section may be referenced by specifying a range of subscripts, e.g. 

   
X(I:J)      ! rank one array of size J-I+1 
Y(I, 1:J)   ! rank one array of size J (e.g. the Ith row of a .. 
            ! .. matrix with J columns) 
X(2:5, 8:9) ! rank one array of size 4+2 
 

   
An array section is technically an array, and may appear in statements where an array is appropriate, 
although its individual elements may not be referenced directly. So we can't write/X(I:J)(2)/ to 
reference the second element of the section X(I:J).  Rather write X(I+1) (since the first element 
is naturally X(I)). 
One or both of the bounds in a section may be omitted, and a stride other than 1 may be used: 

   
A(J, :)      ! the whole of row J 
A(J, 1:K:3 ) ! elements 1, 4, 7, ... of row J 
 

   
A section subscript may even be a one-dimensional array, of integer type. E.g., the coding 

   
REAL, DIMENSION(10) :: A = (/ (I, I = 2, 20, 2) /) 
INTEGER, DIMENSION(5) :: B = (/ 5, 4, 3, 2, 1 /) 
PRINT*, A(B) 
 

   
produces the output 

   
10.00 8.00 6.00 4.00 2.00 
 

   
A subscript of this nature is called a vector subscript. The elements of a vector subscript may be in 
any order. E.g. 

   
A( (/ 3, 5, 1, 2 /) ) 
 

   
is a section of A with elements A(3), A(5), A(1), and A(2), in that order. Some of the values in 
the vector subscript may be repeated. This is called a many-one section, since more than one element 
of the section is mapped onto a single array element. E.g.  

   
A( (/ 3, 5, 1, 5 /) ) 
 

   
is a section with both elements 2 and 4 referencing A(5). 
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A many-one section may not appear on the left of an assignment statement. If an array section with a 
vector subscript is an actual argument of a subprogram, it is regarded as an expression, and it may 
not be changed by the subprogram. It may therefore not have intent OUT or INOUT. 

Initializing arrays with DATA 
   
All or part of an array may be initialized in a DATA statement. There are a number of possibilities, 
e.g. 

   
REAL, DIMENSION(10) :: A, B, C(3,3) 
DATA A / 5*0, 5*1 /                   ! first 5 zero, last 5 one 
DATA B(1:5) / 4, 0, 5, 2, -1 /        ! section 1:5 only 
DATA ((C(I,J), J= 1,3), I=1,3) / 3*0, 3*1, 3*2 / ! by rows 

Array expressions 
   
An intrinsic operator may operate on an array as well as a scalar, to produce an array expression. 
When a unary intrinsic operator acts on an array, it acts on each element of the array. E.g.-X reverses 
the sign of each element of the array X. 
When a binary intrinsic operation is applied to a pair of arrays of the same shape (identical rank and 
extents), the operation is applied to the corresponding elements of the operands. The result of the 
operation is an array of the same shape. One of the operands may be a scalar, in which case it is used 
in the operation on each element of the array operand (the scalar is considered to have been 
"broadcast" to an array of the same shape as the array operand). E.g., given the declaration 

   
REAL, DIMENSION(10) :: X, Y 
 

   
the following are examples of array expressions: 

   
X + Y         ! result has elements X(I) + Y(I) 
X * Y         ! result has elements X(I) * Y(I) 
X * 3         ! result has elements X(I) * 3 
X * SQRT( Y ) ! result has elements X(I) * SQRT( Y(I) ) 
X == Y        ! result has elements .TRUE. if X(I) == Y(I),  
              ! .. and .FALSE. otherwise 
 

   
Note that when an array is the argument of an elemental function, the function operates on each 
element of the array.  
Two arrays of the same shape are conformable. A scalar is conformable with any array.  
Note that binary operations apply to corresponding positions in the extent, not to corresponding 
subscripts. E.g. 

   
X(2:5) + Y(4:7) 
 

   
has element values 

   
X(I) + Y(I+2), I = 2, 3, 4, 5. 

Array assignment 
   
An array expression (this includes a scalar expression) may be assigned to an array variable of the 
same shape. Each element of the expression is assigned to the corresponding element of the target 
array. Again, correspondence is by position within the extent, rather than by subscript value. E.g. 

   
REAL, DIMENSION(10)  :: X, Y 
REAL, DIMENSION(5,5) :: A, C 
X = Y                 ! both rank one with same size 
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Y = 0                 ! Y full of zeroes 
X = 1 / X             ! replace each element of X 
                      !   with its reciprocal 
X = COS( X )          ! replace each element of X with its cosine 
X(1:5) = Y(4:8)       ! both rank one with size 5 
A(I, 1:J) = C(K, 1:J) ! row K of matrix C assigned to row I of  
                      !   matrix A 
 

   
These facilities are extremely useful in numerical procedures such as Gauss reduction. 
If the expression on the right of an array assignment refers to part of the array on the left, the 
expression is fully evaluated before the assignment begins. E.g. 

   
X(1:3) = X(2:4) 
 

   
results in each element of X(I), I = 1, 2, 3 having the value that X(I+1) had before the 
assignment began. 

The WHERE construct 
   
W HEREconstruct may be used to perform an operation on only certain elements of an array, e.g. 

   
WHERE (A > 0) 
  A = LOG( A )      ! log of all positive elements 
ELSEWHERE 
  A = 0             ! all non-positive elements set to zero 
END WHERE 

   
The ELSEWHERE clause is optional. The construct is analogous to IF-THEN-ELSE.  
The expression in parentheses after the keyword WHERE is a logical array expression, and may 
simply be a logical array. It is sometimes called a mask. 
There is a corresponding WHERE statement: 

   
WHERE (A /= 0) A = 1 / A !  
 

   
replace non-zero elements by reciprocals 

Array-valued functions 
A function may be array-valued. If it is an external function, it needs an interface block. 

Array handling intrinsic functions 
   
There are a number of intrinsic functions which relate specifically to arrays. The complete list is in 
Appendix C. A sample is given here.  
ALL(X) returns the value .TRUE. only if all the elements of the logical array X are true. 
ANY(X) returns the value .TRUE. if any element of the logical array X is true. Otherwise it returns 
.FALSE. 
SUM(X) and PRODUCT(X) return the sum and product of the elements of the integer, real or 
complex array X respectively.  
In all these cases X can be an array expression, e.g. 

   
INTEGER, DIMENSION(5,5) :: A 
REAL X(3), Y(3) 
... 
IF (ANY(A > 0)) A = 1   ! if any element > 0 replace all by 1 
IF (ALL(A == 0)) A = -1 ! if all elements = 0, replace all by -1 
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Dot = SUM( X * Y )      ! scalar product of X and Y 

Chapter 9 Summary 
   
• Arrays are useful for representing and processing large amounts of data. 
• An array is a collection of subscripted variables with the same name. 
• Members of an array are called elements. 
• The number of elements in an array is its size. The size may be zero. 
• Upper and lower bounds of array subscripts are specified with the DIMENSION attribute in the 

array type specification statement. 
• An array subscript may not fall outside the bounds specified by DIMENSION. 
• An array subscript may be any valid numeric expression (rounded if necessary). 
• The number of dimensions of an array is its rank. An array may have up to seven dimensions. A 

scalar has a rank of zero. 
• The number of elements along a dimension of an array is the extent of the dimension. 
• The sequence of the extents of an array is its shape. 
• An array may be passed as an actual argument to a subprogram. The dummy argument must 

have the same shape. If the corresponding dummy argument is an assumed-shape array it will 
take on the shape of the actual argument.  

• A dynamic variable (which may be an array) is specified with the ALLOCATABLE attribute and 
may be allocated memory while a program is running. The memory may be deallocated later.  

• A dummy argument may not be allocatable. 
• A rank-one array constant may be formed with an array constructor. 
• An implied DO may be used in an array constructor. 
• An array section is a subarray. 
• A section subscript given by a rank-one integer expression is a vector subscript. 
• Arrays with the same shape are conformable. 
• A section is conformable with any array of the same shape. 
• A scalar is conformable with any array. 
• Array expressions may be formed from conformable arrays.  
• Array expressions may be assigned to conformable arrays. 
• When an elemental intrinsic function takes an array argument, the function is applied to each 

element of the array. 
• The WHERE construct controls operations on array elements according to a logical mask. 

Exercises 
   
If Num is an integer array with the attribute DIMENSION( 100 ) write the lines of coding which 
will put the first 100 positive integers (1, 2, ..., 100) into the elements Num(1), ..., Num(100);       
put the first 50 positive even integers (2, ..., 100) into the elements Num(1), ..., Num(50);  
Assign the integers in reverse order, i.e. assign 100 to Num(1), 99 to Num(2), etc. endalphalist 
Write some statements to put the first 100 Fibonacci numbers (1, 1, 2, 3, 5,break 8, ... ) into an array 
F(1), ... , F(100).  
Salary levels at an educational institution are (in thousands of dollars): 9, 10, 12, 15, 20, 35 and 50. 
The number of employees at each level are, respectively, 3000, 2500, 1500, 1000, 400, 100, 25. 
Write a program which finds and writes: the average salary level;  
The number of employees above and below the average level;  
The average salary earned by an individual in the institution. 
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Write a program which reads 10 numbers into an array, and prints the mean, and the number in the 
array furthest in absolute value from the mean. 
Develop a structure plan for the problem of writing all the primes less than 1000 (1 and 2 are 
generally regarded as primes, prime number generationand will probably have to be dealt with 
separately). Write the program. Hint: use an array to store the primes as they are found.  
In an experiment N pairs of observations (Xi, Yi) are made. The best straight lineleast squares that 
may be drawn through these points (using the method of Least Squares) has intercept A on the x-axis 
and slope B, where 

   
 

   
   

 
   
and 

   
 
   

   
 

   
The correlation coefficient R is given by  

   
 

   
   

 
   
where S5 = sum Yi

 2. (R = 1 implies a perfect linear relationship between Xi and Yi. This fact can be 
used to test your program.) All the summations are over the range 1 to N. The observations are 
stored in a text file. It is not known how many observations there are. Write a program to read the 
data and compute A, B and R. Hint: you don't need arrays! 
If a set of points (Xi, Yi) are joined by straight lines, the value of Y corresponding to a value X which 
lies on a straight line between Xi and Xi+1 is given by  

   
 
   

   
 

   
This process is called linear interpolation. Suppose nolinear interpolationinterpolation more than 
100 sets of data pairs are stored, in ascending order of Xi, in a text file. Write a program which will 
compute an interpolated value of Y given an arbitrary value of X keyed in at the keyboard. It is 
assumed that X is in the range covered by the data. Note that the data must be sorted into ascending 
order with respect to the Xi values. If this were not so, it would be necessary to sort them first.  
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Chapter 10 Introduction 

   
So far we have concentrated on writing programs to solve various problems without paying too 
much attention to how the output looks. In this chapter we will see how to use FORMAT 
specifications to produce neater output. We will also look at data transfer involving files. 
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10.1. Rabbit Breeding the Fibonacci Way 
   
To make the exercise more interesting, we will write a program to model a rabbit population using 
the following assumptions: 
 1. We start with one new-born male/female pair. 
 2. A new-born pair produce a male/female pair after two months. 
 3. Male/female pairs of age two months and older produce a male/female pair every month. 

   
If we represent the number of male/female pairs after n months by the variable Fn, some scratching 
around with a pencil and paper soon reveals that Fn takes the following values: 

 
Month n 1 2 3 4 5 6 7 8 
Population Fn 1 1 2 3 5 8 13 ? 
The sequence {Fn} is called the Fibonacci sequence. We want to write a program that computes the 
total population for up to, say, 12 months. Note that this model does not allow for deaths; this 
possibility is discussed in Chapter 15. It can be shown that each term in the sequence is the sum of 
the previous two, i.e. 
We therefore need to have three variables in the program, Fn, Fn_1 and Fn_2, which need to be 
updated each month (assuming that we are not going to use an array). An interesting feature of the 
Fibonacci sequence is that 
We will also compute this ratio, to verify that it has a limit (in fact, the limit is the same whatever 
the first two values in the sequence are). 
The program below uses FORMAT statements to control the layout of the output, to give you an idea 
of what can be done. The details are then discussed. 

   
! Rabbit breeding the Fibonacci way 
 
IMPLICIT NONE 
INTEGER Month 
REAL Fn, Fn_1, Fn_2 
 
! Format specifications 
10  FORMAT( 'Month', T12, 'Population', T27, 'Ratio' /    & 
        5('-'), T12, 10('-'), T27, 5('-') / ) 
20  FORMAT( I3, T12, F7.1, T27, F6.4 ) 
 
! Now the executables 
Fn_1 = 1 
Fn_2 = 1 
PRINT 10                         ! heading 
 
DO Month = 3, 12 
  Fn = Fn_1 + Fn_2 
  PRINT 20, Month, Fn, Fn / Fn_1 
  Fn_2 = Fn_1 
  Fn_1 = Fn 
END DO 
 
END 

   
Output: 

   
Month      Population     Ratio  
-----      ----------     -----  
                                 
  3            2.0        2.0000 
  4            3.0        1.5000 
... 
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 12          144.0        1.6180 
   
Briefly, we have replaced PRINT* with PRINT n, where n is the label (in the range 1–99999) of a 
FORMAT statement, which specifies how the output is laid out. 
The first FORMAT statement prints the headings.T12 tabulates to column 12, before printing any 
further output. The slash (/) starts a new record (line feed). The 5 (as in 5('-')) repeats what 
follows immediately. Incidentally, the best way to get your headings right is to put them in after you 
have got the rest of the output looking as you want it. 
The second FORMAT statement controls the output of the variables. I3 prints an integer over 3 
columns. F7.1 prints a real over 7 columns with one decimal place. F6.4 prints a real over 6 
columns with 4 decimal places. 
FORMAT statements, which are non-executable in the sense that they don't actually initiate any 
action, are usually grouped together for ease of reference, e.g. at the beginning of a program. 

10.2. The PRINT Statement 
   
The general form of the PRINT statement is 
PRINT fmt [,list] 

   
where fmt may be one of the following: 
• a statement label referring to a FORMAT statement with the format specifications in parentheses, 

e.g. 
   

PRINT 10, X 
10 FORMAT( 'The answer is: ', F6.2 ) 

   
• an asterisk as in the list-directed I/O we have been using up to now, e.g. 

   
PRINT*, 'The answer is: ', X 

   
• a character expression or constant which evaluates to a format specification in parentheses, e.g. 

   
PRINT "( 'The answer is: ', F6.2 )", X 

   
   
The quantities in list may be constants, expressions, variables, or implied DO lists of the form 
do-list, variable = expr1, expr2 [,expr3]) 

   
where items in do-list may themselves be implied DO lists. 
READ can be used in the same way as PRINT, except that the quantities in the list must be variables. 

10.3. Formatting Features 
   

In this section we discuss the details of format control for input and output. 

Edit descriptors 
   

Edit descriptors, such as F7.1 in the program above, specify exactly how a quantity should appear 
on output, or in preparation for input. More technically, they specify how a value represented 
internally by the computer should be converted into a (readable) character string on an output device 
or file, or converted from a character string on an input device or file.  
There are three categories of edit descriptors: data, character string, and control.  

Data edit descriptors 
   
In the descriptions below, the symbols w, m, d and e all represent integer constants, while b 
represents a blank. 
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In all cases involving numeric output, if the specified field width is too narrow it is filled with 
asterisks. 
Integer values are converted by the I edit descriptor. The usual form is Iw, where w specifies the 
field width. The value is right justified in this field, which must allow room for a leading minus sign. 
An alternative form for output is Iw.m, which ensures that a minimum of m digits is printed, with 
leading zeros if necessary. E.g. I6.3 prints -99 as bb-099. 
Binary, octal and hexadecimal values are also converted by binary the Bw, Ow and Zw edit 
descriptors respectively. The minimum number of digits m may also be specified. For input, the 
leading letter (B, O or Z) and the delimiters must be omitted. E.g. 

   
READ '(B4)', I 

   
will convert the input string 1111 into the decimal value 15. 
Real values are converted by the F, E, EN or ES edit descriptors. 
The F (fixed point) descriptor has the form Fw.d, where w defines the total field width (including a 
possible sign and the decimal point), and d defines the number of digits after the decimal point 
(rounded if necessary). E.g. –12.345 is printed under F8.2 as bb-12.35. 
 On input, if the input string has a decimal point, the value of d is ignored. E.g. b1.2345b is read 
under the descriptor F8.2 as 1.2345.  
If the input string has no decimal point, the rightmost d digits are taken as the decimal part. E.g. b-
12344 is read under F7.2 as -123.45.  
There are two other forms of input possible under the F descriptor. If the input is in standard 
scientific notation, or if the E is omitted from the standard form and the exponent is signed, the d 
specifier is again ignored. E.g. 12.345E-2 (or 12.345-2b) is read under F9.1 as 0.12345.  
The E edit descriptor has two forms. For both of them, the rules for input are the same as those for 
the F descriptor. On output, Ew.d produces a mantissamantissa (significand) of d digits with an 
absolute value less than 1 over a field of w. This must include room for a possible sign, the decimal 
point, and an exponent of four characters, consisting either of E followed by a sign and two digits, or 
of a sign and three digits. The form with E is not used if the magnitude of the exponent is greater 
than 99. E.g. 1.234 times 10̂ 23 is written under E10.4 as b.1234E+24 or b.1234+024.  
The other form of the E descriptor is Ew.dEe, where e determines the number of digits to appear in 
the exponent field. This form is mandatory for exponents with a magnitude greater than 999. E.g. 
1.234 times 10 1234 is written under E12.4E4 as b.1234E+1235.  
The EN (engineering) edit descriptor is the same as the E descriptor except that on output the 
exponent is divisible by three, the mantissa is greater than or equal to 1 and less than 1000, and the 
scale factor (see below) is ignored. E.g. 0.00217 is written under EN9.3 as 2.170E-03 or 
2.170-003.  
The ES (scientific) edit descriptor is the same as the EN descriptor except that the mantissa is less 
than 10. 
Complex values may be controlled by pairs of F, E, EN, or ES edit descriptors. The real and 
imaginary parts may have different descriptors, which may be separated by character string and 
control edit descriptors. 
Logical values are controlled by the L edit descriptor in the form Lw. On output T or F will appear 
in the right-most position of the field w. On input, optional blanks are optionally followed by a 
decimal point, followed by T or F (upper- or lowercase), optionally followed by additional letters. 
This curious arrangement is simply to allow the strings .TRUE. or .FALSE. to be input.  
Character values are controlled by the A edit descriptor in one of two forms —A or Aw. In the form 
A, the width of the I/O fields is determined by the length of the character variable or expression in 
the I/O list. E.g. if NAME is declared 
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CHARACTER NAME*7 
   
then 7 characters are output, and 7 characters are input. 
In the second form (Aw), the w left-most characters are printed, on output. If necessary, the output 
field is blank-filled from the left.  
The rules for input under the second form are a little strange. Suppose len is the length of the 
variable being read. If w is less than len, the left-most w characters are read, padded with blanks on 
the right. E.g. under A5, the input string NAPOLEON is read into NAME (as declared above) as 
NAPOLbbb. 
However, and this is the strange bit, if w is greater than len, the right-most len characters are read. 
So under A8, for example, the string NAPOLEON is read into NAME as APOLEON. One would have 
expected the left-most characters to be read.  
outindent Finally, there are the general Gw.d and Gw.dEe edit descriptors, which may be used for 
any of the intrinsic data types. These descriptors are useful for printing values whose magnitudes are 
not well-known in advance. Where possible values are output under the equivalent F descriptor; 
otherwise the equivalent form with E is used. 

The character string edit descriptor 
   
A character constant (a string of characters enclosed in apostrophes or quotes) may be output by 
embedding it in a format specification, as we have already seen, e.g. 

   
       PRINT 10 
   10  FORMAT( 'Fortran 90 is the language for me' ) 

   
For completeness, we should mention the obsolescent H edit descriptor. It was named in honour of 
Hollerith, who invented punch cards to process a census in the United States during the last century. 
An output character string (without delimiters) may be preceded by an nH descriptor, where the 
integer constant n is the number of characters in the string, e.g. 

   
   10  FORMAT( 24HWe must count carefully! ) 

   
The drawback is that you must count the number of characters in the string; it is very easy to make a 
mistake. 

Control edit descriptors 
   
These edit descriptors enable you to position output precisely, start a new record, skip columns on 
input, etc. 
Embedded blanks in input fields are treated either as zeros, or as nulls (the default). The default is 
overridden by the BN (blanks null) and BZ (blanks zero) edit descriptors. The new mode holds for 
the rest of the format specification, or until explicitly changed. E.g. the input string 1b31b3 is read 
under (BN, I3, BZ, I3) as the two values 13 and 103. 
There are three descriptors which control the leading signleading sign on output. A leading minus is 
printed by default. The SP (sign print) edit descriptor causes leading positive signs to be printed. 
The SS (sign suppress) descriptor suppresses leading plus signs while SP is in effect, and the S 
descriptor restores the default option. E.g. the value 99 written three times under (SP, I3, SS, 
I3, S, I3) appears as +99b99b99. A sign descriptor holds for the rest of the format 
specification, unless changed by another sign descriptor.  
Scale factors of the form kP may be applied to input of real quantities under the E, F, EN, ES and G 
edit descriptors. k is an integer constant specifying the scale factor. Any quantity without an 
exponent field is reduced by a factor 10 k. E.g. 1.0 is read under (2P, F3.0) as 0.01. Quantities 
with an exponent are not affected.  
A scale factor also affects output under E, F or G editing. Under F, a scale factor kP multiplies the 
output by a factor 10 k. Under E editing, and under G when the E option is taken, the exponent of the 
output is reduced by k, while the mantissa is multiplied by 10 k. 
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A scale factor holds for the rest of the format specification, or until another scale factor is 
encountered. 
Tabulation in input or output fields is possible in four ways. Tn causes tabulation to position n of 
the current I/O record. TRn (or nX) tabulates n positions to the right of the current position, and TLn 
tabulates n positions to the left of the current position (where in all cases tabulation can never go to 
the left of position 1). 
On input, tabulation can be used to skip past data, or to re-read data. E.g. under (I1, 2X, I1) 
the input string 1234 is read as the two values 1 and 4. 
On output, tabulation can be used in the conventional way, or for (partial) replacement. E.g. under 
(I3, TL2, I3) the values 911 and 999 are output as 9999. 
A new record may be started at any point in a format specification by the slash (/) edit descriptor. 
It may have a repeat count, so /// is the same as 3/. It only needs to be separated by a comma 
from a preceding descriptor if it has a repeat count.  
Colon editing stops format control if there are no more items in an I/O list. In particular, it is useful 
in preventing unwanted character strings from being printed. E.g. the statements 

   
PRINT 10, (X(I), I = 1, N ) 
10  FORMAT( 'X1:', I2 : ' X2:', I2 : ' X3:', I3 ) 

   
produce the output 

   
X1: 1 

   
when N has the value 1. Without the colons, the output would have been 

   
X1: 1 X2: 

   
Note that the colons do not need to be separated from neighbours by commas. 

Repeat counts 
   
The data edit descriptors described above, as well as the new record (slash) descriptor, may all be 
preceded by a repeat count in the form of an integer constant. A repeat count may be applied to a 
group of edit descriptors enclosed in parentheses, and may be nested, e.g.  

   
3(2F6.2, 2(I2, 3I3)) 

   
If a format specification without any items in parentheses is completed before the I/O list is 
exhausted, a new record begins, and the format specification is repeated. Further records begin in the 
same way until the I/O list is exhausted. E.g. the following code prints an array of 100 elements, 20 
elements per line: 

   
 PRINT 10, (X(I), I = 1, 100)  
10  FORMAT( 20I3 ) 

   
Similarly, on input, a new record is taken from the input file each time the specification is repeated. 
Any excess input data on the record is ignored. E.g. the code 

   
READ 10, I, J 
10  FORMAT( I1 ) 

   
reads two values, 1 and 3, from the input records 

   
12 
34 

   
A format specification without parentheses may therefore be thought of as a template of how the 
compiler sees the entire I/O record. 
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However, if a format specification contains items in parentheses, when the format is exhausted a 
new record is taken and format control reverts to the left parenthesis corresponding to the second 
last right parenthesis—including a possible repeat count outside the parentheses. This is called 
reversion. E.g. in 

   
  10   FORMAT( F5.0, 2(F6.1, 3(F7.2) ), F8.3 ) 

   
new records start at 2(F6.1,  .... 

 

Carriage control 
   
Fortran's formatted output statements were originally designed for line printers. For output to such 
devices, the first character of each record is used for carriage control (an old-fashioned word from 
the days of mechanical typewriters). There are four options: 
 

b (blank) start a new line 
+ remain on same line (overprint) 
0 skip a line 
1 advance to the beginning of a new page 
A blank in the first column effectively means no action is taken, so it is good practice to make sure a 
blank is sent as the first character, e.g. by starting all format specifications with T2 (begin writing in 
position 2). Otherwise, for example, printing an integer under FORMAT( I3 ) will cause a page 
throw every time the integer is in the range 100–199! 
These conventions will not necessarily work on a dot-matrix printer connected to a PC. However, a 
combination of OPEN and WRITE with the CHAR() intrinsic function can be used to send any 
special control characters to the printer. The following code sends a form feed character (new page): 

   
OPEN( 1, FILE = 'prn' ) 
WRITE( 1, 10 ) CHAR( 12 ) 
   10  FORMAT( A1 ) 

   
The control character is not restricted to the first position in the output record; it can be anywhere. In 
this way you can send any of your printer's special printing codes. 

10.4. Formatted READ 
   
The form of the READ statement we have used so far is 
READ fmt [,list] 

   
where fmt is a label, asterisk or character string, as in PRINT. 
There is a more general form, which allows input from files, and which can intercept errors and end-
of-file conditions gracefully, without causing the program to crash. It is 
READ ([UNIT=]u, [FMT=]fmt [,IOSTAT=ios] [,ERR=errorlabel]  [,END=endlabel]) [list] 

   
The only obligatory items are the format specifier fmt,  as described above, and the unit specifier u. 
A unit is an I/O device, such as a printer, terminal, or disk drive, for example, which may be 
connected by the compiler to your program. Such a unit may have a unit number attached to it, 
which is usually in the range 1–99, for the duration of a program.  
We have seen the only two situations where a unit number is not required. The PRINT normally 
expects to output to the terminal, and the first form of READ above normally expects to read from 
the terminal. In such cases, the terminal is called the standard I/O unit. Your system may allow you 
to change the standard unit. 
The unit specifier u, when it is required, may be of three forms: an integer expression, an asterisk 
(which implies the standard input unit), or a character variable in the case of an internal file (see 
below).  
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The remaining specifiers are optional, and may be in any order. If IOSTAT is specified, ios must be 
an integer variable. After execution of READ ios has different (system-dependent) negative values 
depending on whether an end-of-record or end-of-file condition occurred, a positive value if an error 
was detected, or the value of zero otherwise. The presence of IOSTAT prevents a crash if an 
exception occurs. 
Further details are given in Appendix B. 

10.5. Formatted WRITE 
   
The general form of the WRITE statement for formatted output is 
WRITE ([UNIT=]u, [FMT=]fmt [,IOSTAT=ios] [,ERR=errorlabel]) [list] 

   
The specifiers have the same meanings as in the READ statement. 
The output device may be selected during program execution. You may be developing a large 
program which will eventually spew vast amounts of data out on the printer. To save time (and 
paper) while writing the program, you may want to be able to specify while the program is running 
where the output should go. The following code should help (PRN and CON are the names of the 
PC printer and terminal respectively): 

   
CHARACTER OutputDevice*3 
PRINT*, 'Where do you want the output ("prn" or "con")?' 
READ*, OutPutDevice 
OPEN( 1, FILE = OutputDevice ) 
WRITE( 1, * ) 'Output on designated device' 

10.6. Internal Files 
   
It was mentioned above that the unit specifier in READ or WRITE could be an internal file. This is 
basically a character variable (or array) which may be written to or read from. E.g. 

   
CHARACTER(50) CAPTION 
... 
WRITE( CAPTION, 10 ) YEAR 
10  FORMAT( 'Sales figures for the financial year: ', I4 ) 

   
CAPTION could then be used as a caption in a graphical display.  
Internal files provide a general means of converting numeric data to strings, and vice versa. READ 
may be used to reverse the above process. In the code below, the string "1984" is converted to an 
integer with the value 1984.  

   
CHARACTER (30) STRING  
STRING = "1984"  
READ( STRING, 10 ) NYEAR  
10  FORMAT( I4 ) 

10.7. External Files 
   
Output from a program may be sent to an external file (e.g. residing permanently on a disk), and 
input may also be fetched by a program from such a file. This powerful facility provides a means of 
keeping records which may need to be updated, examined and analysed.  
There is a certain amount of jargon that needs to be overcome before we can proceed. In Fortran, a 
file is said to exist if a program is able to access it. Existence is therefore a relative term, defined 
from the point of view of the program attempting access. A file which exists for a program may or 
may not be empty, and it may or may not be connected to that program. A file is connected by 
association with a unit number known to the program. This connection is usually made by an OPEN 
statement, but certain files may be automatically pre-connected.  
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A file may be thought of as a stream of data, arranged into records. The records are all either 
formatted, or unformatted. Files may be accessed sequentially, or directly; normally a particular file 
is restricted to one mode of access. If access is direct, all records must have the same length; this is 
not necessary under sequential access. 
In the rest of this chapter we outline the main file handling facilities of Fortran 90. More substantial 
examples follow in later chapters.  

File positioning 
   
A file has a current position which may be 
• within a record; 
• between records; 
• ahead of the first record (the initial point); 
• after the last record (the terminal point). 

Sequential files 
   
A sequential file may be thought of as a continuous tape, where records are located sequentially 
along the tape. If the file is formatted, the records may be of varying length, i.e. the record length 
does not need to be specified. 
A sequential file may be read only from the beginning. This makes the access time slower than for a 
direct access file, since to find something near the end of a sequential file, you have to read every 
record from the beginning. You also cannot replace or remove a record directly, as you can with 
direct access files. However, sequential files are helpful in situations where you might need to access 
the file with a word processor—in this context the file would be a text (or ASCII) file. We have seen 
sequential files in action in reading data from disk files. 
The following example shows how to update a sequential file. It reads a line of text from the file, 
and asks you if you want to delete the line. If you don't want to delete the line, it is written to a 
temporary (SCRATCH) file. The original file is then deleted, a new empty file of the same name is 
created, and finally the contents of the temporary file is copied back. It sounds cumbersome, because 
it is cumbersome. Manipulation of sequential files usually is. Try the program out on a text file with 
a few names in it, which you can set up with your text editor. 

   
CHARACTER(80) Name, FileName, Ans 
WRITE( *, '(A)', ADVANCE = 'NO' ) "Name of file to be updated: " 
READ*, FileName 
  
OPEN( 1, FILE = FileName ) 
OPEN( 2, STATUS = 'SCRATCH' ) 
 
IO = 0 
DO WHILE (IO == 0) 
  READ( 1, *, IOSTAT = IO ) Name 
  IF (IO == 0) THEN 
    PRINT*, Name 
    WRITE( *, '(A)', ADVANCE = 'NO' ) "Delete (Y/N)? " 
    READ*, Ans           ! could be upper or lowercase 
    IF (Ans /= 'Y' .AND. Ans /= 'y') WRITE( 2, * ) Name 
  END IF 
END DO 
 
REWIND( 2 )                     ! back to the beginning of SCRATCH 
CLOSE( 1, STATUS = 'DELETE' )   ! delete original 
OPEN( 1, FILE = FileName )      ! recreate original 
 
IO = 0 
DO WHILE (IO == 0) 
  READ( 2, *, IOSTAT = IO ) Name 
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  IF (IO == 0) WRITE( 1, * ) Name 
END DO 
 
CLOSE( 1 )                      ! keep  
CLOSE( 2 )                      ! delete 
END 

   
Note that the two DO WHILE loops make use of the IOSTAT specifier to avoid an attempted READ 
past the end of the file. 
The OPEN statement has the form 
OPEN( [UNIT = ]u, speclist ) 

   
where u is the file unit number, and speclist is a list of specifiers, many of which are optional, and 
may be in any order. The unit number must appear first, unless it is specified with UNIT=. The 
specifiers are character expressions or constants. If character expressions are used, trailing blanks 
are ignored. Except for the FILE specifier, lowercase letters are converted to uppercase.  
You also need to know that the OPEN statement can be executed on a unit number which is already 
connected to a file. This is to enable the properties of a connection to be changed, and is only 
allowed with certain specifiers, for example, the BLANK specifier which sets the default for the 
interpretation of blanks to nulls or zeros. 
Some of the more common specifiers are described below; you should consult Appendix B for all 
the gory details.  
The FILE specifier is a character expression which gives the name of the file. If this specifier is 
omitted (and the unit is not already connected) the STATUS specifier must appear with the value 
SCRATCH. 
If SCRATCH is specified for the STATUS specifier (as above on unit 2), a temporary file is created. 
It ceases to exist when the unit is closed, or when the program terminates. If NEW is specified, the 
file must not already exist. If OLD is specified it must already exist. If REPLACE is specified, the file 
is created if it does not exist; if it does exist, it is deleted, and a new file is created with the same 
name.  
The simple form of the OPEN statement used in the program above connects a file for sequential 
access (the default mode of access), with formatted records (the default for sequential access). These 
properties may be changed by the ACCESS and FORM specifiers, as we shall see below. 
New data may be written at the end of a sequential file by setting the POSITION specifier to 
APPEND.  
Errors (e.g. attempting to open a non-existent file with status OLD) may be intercepted with the 
IOSTAT and ERR specifiers. This avoids a crash; you can program a more graceful response.  
A sequential file may be repositioned to its initial point with the statement  
REWIND u 

   
The statement 
BACKSPACE u 

   
positions a sequential file before the current record if it is positioned within a record, or before the 
preceding record if it is positioned between records. This statement is costly in computer overheads 
and should be avoided.  
The end of a sequential file is marked by a special record called the endfile record. Most computer 
systems will automatically write this record at the end of a sequential file. However, if you are in 
doubt, you can write an endfile record explicitly with 
ENDFILE u 

   
A file is disconnected with a CLOSE statement. It can take the form 
CLOSE( [UNIT = ]u [, STATUS = st] ) 
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where the STATUS specifier may be specified as KEEP or DELETE. A file may therefore be erased 
on disconnection, as in the example above. The default value is KEEP, unless the file has status 
SCRATCH, in which case the default (and only) value is DELETE. All connected units are 
automatically closed when a program terminates normally (even if there are no CLOSE statements), 
and a CLOSE on an unconnected unit does not cause an error. However, you should make a point of 
closing all your files (and no others!), since it shows that you know what you are doing.  

Unformatted I/O 
A file's records may be unformatted. The advantage of this is that they take up much less storage 
than formatted records. E.g. the largest integer available under the FTN90 compiler (2,147,483,647) 
takes up only 4 bytes on an unformatted record (since it can be represented with 32 bits), but 10 
bytes on a formatted record (the number of characters required to represent it).  
A sequential file is formatted by default, so the FORM specifier must be used if it is to be 
unformatted, as in the next example, which writes an integer array and reads it back. 

   
INTEGER, DIMENSION(10) :: A = (/ (I, I = 1,10) /) 
OPEN( 1, FILE = 'TEST', FORM = 'UNFORMATTED' ) 
WRITE (1) A 
REWIND (1) 
A = 0     ! just to be sure ! 
READ (1) A 
PRINT*, A 
CLOSE (1) 
END 

   
Note that to read the file it must be rewound, since it is sequential (by default). 
Each READ and WRITE transfers exactly one record. The file created in this example therefore has 
one record, containing an array of 10 integers. 
When output is to a sequential file a record of sufficient length is created. On input, the number of 
items in the input list must not exceed the number of values in the record.  

Direct access files 
   
In the case of direct or random access files, a particular record may be read and/or rewritten, unlike 
the case with sequential access files, where records may not in general be replaced. Records may 
also be added at the end of a direct access file without rewriting the whole file. Direct access files 
are unformatted by default, and all their records must be the same length. This record length must be 
specified with the RECL specifier in the OPEN statement. Record length is generally the number of 
bytes occupied by the item written to the file, but may be system dependent. The INQUIRE 
statement may be used to find the record length (see below). The following example reads a list of 
names from the keyboard, writes them to a direct access file, reads them back, and finally replaces 
the third record.  

   
CHARACTER (20) NAME  
INTEGER I  
INQUIRE (IOLENGTH = LEN) NAME  
OPEN( 1, FILE = 'LIST', STATUS = 'REPLACE', ACCESS = 'DIRECT', & 
         RECL = LEN )  
 
DO I = 1, 6 
  READ*, NAME 
  WRITE (1, REC = I) NAME             ! write to the file 
END DO 
 
DO I = 1, 6 
  READ( 1, REC = I ) NAME             ! read them back 
  PRINT*, NAME 
END DO 
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WRITE (1, REC = 3) 'JOKER'            ! change the third record 
 
DO I = 1, 6 
  READ( 1, REC = I ) NAME             ! read them back again 
  PRINT*, NAME 
END DO 
 
CLOSE (1) 
END 

   
Note that a direct access file behaves like an array. In fact, if memory is in short supply, data can 
easily be handled with a direct access file, rather than in an array. If the file is stored on a RA M 
(virtual) disk there is practically no difference in access time.  
The record number is given by the REC specifier in the READ and WRITE statements, which 
otherwise have the same forms as for sequential files. 

The INQUIRE statement 
   
This statement may be used to ascertain the status and attributes of connected files, and unit 
numbers, and the record length of an output list. It has three forms:INQUIRE by output list (as 
above), INQUIRE by unit, and INQUIRE by file. 
Inquiry by output list has the form 
INQUIRE (IOLENGTH = length) output list 

   
This form may be used to establish the length of the unformatted record of an output list. 
An example of inquiry by unit number is 
INQUIRE ([UNIT = ]u, EXIST = allowed) 

   
The logical variable allowed will be assigned the value .TRUE. if unit number u is an allowed unit 
number for your system, and .FALSE. otherwise. 
The existence of a file may be established similarly: 
INQUIRE (FILE = filename, EXIST = allowed) 

   
You can use the EXIST specifier to avoid accidentally overwriting or deleting an existing file. 
The number of the record most recently read or written is returned with the NEXTREC specifier.  
Further details are in Appendix B. 

10.8. Non-advancing I/O 
   
Normally READ and WRITE transfer complete records. This can be a nuisance. A new feature of 
Fortran 90 is non-advancing I/O, whereby a file is left positioned within the current record. 
We have seen the use of non-advancing WRITE in giving screen prompts: 

   
WRITE (*, '(A)', ADVANCE = 'NO') 'Enter a number: ' 
READ*, Number 

   
Non-advancing READ can also be useful, for example, in reading individual characters from a text 
file. The following program counts the number of characters in a text file:  

   
CHARACTER (1) ch 
INTEGER IO, Num 
OPEN( 1, FILE = 'TEXT' ) 
IO = 0 
Num = 0 
 



 138 

DO WHILE (IO /= -1)      ! EOF 
  READ (1, '(A1)', IOSTAT = IO, ADVANCE = 'NO') ch 
  IF (IO == 0) Num = Num + 1          ! genuine character read 
END DO 
 
PRINT*, Num 
CLOSE (1) 
END 

   
Under FTN90 the IOSTAT specifier returns -1 when the end-of-file is encountered, as opposed to -2 
for end-of-record. 
Non-advancing I/O is not available with list-directed I/O. 

10.9. Miscellaneous 
   
For completeness, two further topics need to be mentioned here: list-directed I/O, and NAMELIST. 

List-directed I/O 
   
As we have seen, this takes the form 
READ*,  list 

   
PRINT* [, list] 

   
Data in the input list may be separated by commas, slashes or at least one blank (separators). The 
real and imaginary parts of complex constants must be enclosed in parentheses. 
Character constants enclosed in delimiters ('apostrophes' or "quotes") may be spread over more than 
one record. Delimiters may be omitted if the character constant does not contain a blank, comma, or 
slash; if it is contained within one record; if the first character is not a delimiter; and if the leading 
characters are not numeric followed by an asterisk. 
The reason for the last proviso is that a data value which is to be repeated n times may be given a 
repeat count n*. E.g. 6*0 means the value zero is to be read six times.  
If there is no data value between successive separators, the corresponding input item is left 
undefined (under the FTN90 compiler—although the standard requires that it is left unchanged). 
E.g. the code 

   
CHARACTER (20) Name 
A = 3; B = 3; C = 3; D = 3; 
READ*, Name, A, B, C, D 
PRINT '(A, 4F6.2)', Name, A, B, C, D 

   
under the FTN90 compiler, with input 

   
"fortran 90", 2*, 2*7 

   
gives the output 

   
fortran 90         2.20  2.20  7.00  7.00 

   
(2.2 is a garbage undefined value). 

NAMELIST 
   
This is a curious facility which can be used to name a group of items for I/O purposes. It allows you 
to omit input data for some items in the group. The group of items is named in a NAMELIST 
statement (MYOUT in the example below). The group name may either be specified with the NML 
specifier in READ or WRITE, or it may replace the format specifier. An input record must be 
prefaced by /&/ followed by the group name. Data values may be omitted (in which case the record 
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must end with a slash), and do not have to be in the order specified in the NAMELIST statement. 
Items not specified in the input record are left unchanged. E.g. 

   
INTEGER, DIMENSION(4) :: A = 7 
NAMELIST/MYOUT/A, X, Y 
X = 1 
Y = 1 
READ( *, MYOUT ) 
WRITE( *, NML = MYOUT ) 

   
Input: 

   
&MYOUT A(1:2) = 2*1 Y = 3 

   
Output: 

   
&MYOUT A = 1 1 7 7, X =   1.0000000, Y =   3.0000000 

   
The array section A(3:4) and the variable X are left unchanged.  

Chapter 10 Summary 
   
• A record can be thought of as a line of input/output. 
• Format specifies the layout of a record. 
• Format may be specified by a labelled FORMAT statement, by an asterisk (list-directed I/O), or 

by a character string. 
• The PRINT statement generally only handles output to the screen. 
• Implied DO lists may appear in I/O lists. 
• The WRITE statement can handle output to a file or printer.  
• The READ statement handles input from a file or the keyboard. 
• /O may be list-directed, formatted or unformatted. 
• Format is controlled by edit descriptors. 
• The OPEN statement connects a file to a unit number, to enable transfer of data. 
• The INQUIRE statement obtains information about files, unit numbers and record lengths of 

output lists.  
• Various specifiers, such as IOSTAT, END, and ERR may be used in I/O statements to intercept 

and handle end-of-file conditions and possible errors. 
• Data may be transferred directly to or from a character array, in the form of an internal file. 
• Disk files are examples of external files. 
• Files consist of records, which may be formatted or unformatted. 
• Files are accessed sequentially (the default) or directly (random access). 
• Under sequential access, records are formatted by default, and their length may vary. 
• New records may be appended to a sequential file (added on at the end), but existing records 

may not be rewritten.  
• Under direct access, records are unformatted by default, must all be the same length, and this 

record length must be specified in the OPEN statement. 
• Under direct access, existing records may be rewritten, and new records may be appended. 
• Direct access is generally more efficient than sequential access. 
• If non-advancing I/O is specified, incomplete records may be transferred by READ or WRITE. 

Chapter 10 Exercises 
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10.1   Give the output of the following two program segments (indicate blanks and new lines 
carefully): 

   
(a) 10  FORMAT (1X, 'M=', I3, 'N=', I4, 3X, 'X=', F6.1 / T3, E11.4)        
        M = 117                                                            
        N = -27                                                            
        X = -0.1235E2                                                      
        Y = 1234.567                                                       
        PRINT 10, M, N, X, Y                                               
 
(b) 10  FORMAT (I3, 1X, F6.2, F5.3, I2)               
    20  FORMAT (T2, I2, F8.2 / T3. F3.1, I4 )         
        READ 10, N, X, Y, J                           
        PRINT 20, J, X, Y, N                          
Data: /0146729.123.61035/ 

   
10.2   Show how each of the following values will be printed with the edit descriptors shown 
(assume that carriage control has been taken care of): 
 

(a) -738 (I4) (b) +738 (I3) 
(c) 38.136 (F7.2) (d) -100.64 (F6.1) 
(e) 9876.545 (E10.4) (f) -0.000044009 (E9.2) 

10.3   Write a program which will count all the non-blank characters in a text file of any size.  
10.4   a) Write a program which sets up a direct access file where each unformatted record contains 
a one-dimensional integer array of size 10, say. Write some test data to the file, and read it back to 
make sure it got there.  
(b) Write a separate program which will add one extra record of the same length to the end of the 
file created in part (a). 
10.5   Write a program which will read a positive integer (of any size), find its binary code, and print 
the binary code on one line with no blanks between the digits. Hint: after finding each binary digit, 
store it in a different element of an allocatable array. 
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Chapter 11 Introduction 
   

We have seen some simple examples of the use of the intrinsic character type. Armed with 
the further weapons of arrays and more advanced I/O facilities we can now tackle more 
interesting problems involving characters, or strings as they are often called. 
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11.1. Characters 
   
To recap, a character constant is a string of characters enclosed in delimiters, which are either 
'apostrophes' or "quotes". The delimiters are not part of the string. 
Character variables may be declared in the following ways: 

   
CHARACTER ALPHA            ! length of 1 
CHARACTER (15) Name        ! length of 15 
CHARACTER Word*5           ! length of 5 

   
Assignment is done as follows: 

   
Name = "Bonaparte, N" 

11.2. Bar Charts and Frequency Distributions 
   
The first example utilizes an array and the A edit descriptor for printing characters. 
Suppose we want to analyse the results of a test written by a class of students. We would like to 
know how many students obtained percentage marks in the range 0-9, 10-19, ..., 90-99. Each of 
these ranges is called a decile, numbered from zero for convenience. We also need to cater for the 
bright sparks who get 100 (the eleventh "decile"). Suppose the numbers of students who get marks 
in these ranges are as follows: 
1  0  12  9  31  26  49  26  24  6  1 

i.e. 12 obtained marks in the range 2029. We need an array F(0:10), say, with 11 elements, where 
each element stores the number of students with marks in that particular range, e.g. F(2) should 
have the value 12. The following program prints a bar chart of the frequency distribution F, where 
each asterisk represents one student in that range: 

   
INTEGER, DIMENSION(0:10) :: F = (/ 1, 0, 12, 9, 31, 26, 49, 26, & 
 
                                   24, 6, 1 /) 
 
10  FORMAT( I3, ' - ', I3, '  (', I3, '):', 60A1 ) 
20  FORMAT( '100', 6X, '  (', I3, '):', 60A1 )    
 
DO I = 0, 10 
  IF (I < 10) THEN  
     PRINT 10, 10 * I, 10 * I + 9, F(I), ('*', J = 1, F(I)) 
  ELSE 
     PRINT 20, F(I), ('*', J = 1, F(I)) 
  END IF 
END DO 
 
END 
 

   
Output: 

   
  0 -   9  (  1):*                                                 
 10 -  19  (  0):                                                  
 20 -  29  ( 12):************                                      
 30 -  39  (  9):*********                                         
 40 -  49  ( 31):*******************************                   
 50 -  59  ( 26):**************************                        
 60 -  69  ( 49):************************************************* 
 70 -  79  ( 26):**************************                        
 80 -  89  ( 24):************************                          
 90 -  99  (  6):******                                            
100        (  1):*                                                 
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Note the absence of asterisks for the 10-19 decile. This is because F(1) has the value zero, so that 
the implied DO in the PRINT statement has a zero trip count when I has the value 1. 
Of course, in a real situation, the frequencies will not be presented to you neatly on a plate. You are 
more likely to have a list of the actual marks. You should adapt the program to read a sample set of 
marks, in the range 0-100, and to convert them into frequencies. The basic mechanism is 

   
READ( ... ) MARK 
K = INT( MARK / 10 )      ! K is the decile 
F(K) = F(K) + 1           ! another mark in the Kth decile 

 
11.3. Sorting Words 

   
Characters may be compared in IF statements; this is the basis of alphabetic sorting. Each computer 
system has a collating sequence which specifies the intrinsic ordering of the available character set. 
The Fortran 90 standard requires only that 
• A < B < C ... < Y < Z 
• 0 < 1 < 2 ... < 8 < 9 
• blank < A and Z < 0, or blank < 0 and 9 < A 

   
If lowercase letters are available, there are the further requirements that 
• a < b < c ... < y < z 
• blank < a and z < 0, or blank < 0 and 9 < a 

   
Note that the standard does not insist on how the lowercase characters are to be ordered relative to 
uppercase. 
There are two intrinsic functions that relate a character to its position in the collating sequence (or 
more simply, its code). ICHAR( 'A' ) returns an integer code for its character argument, e.g. 65, 
say, in this case. CHAR( 90 ) returns the character coded by its integer argument, e.g. Z, say. 
Furthermore, the standard requires that access be provided to the ASCII (American Standard Code 
for Information Interchange) collating sequence, in which Z < a (see Appendix D). There are two 
further intrinsic functions, which specifically relate a character to its ASCII code: IACHAR and 
ACHAR. 
However, some computers make use of the EBCDIC collating sequence (Extended Binary Coded 
Decimal Interchange Code—pronounced "ebsadik"). In EBCDIC, unfortunately, the lowercase 
characters come before the uppercase ones, so z < A. This has implications for word sorting, since 
we normally require that  
bOnApArTe < NaPoLeOn 

whatever the case of the characters. 
One way out is always to use ASCII code, but this may be inefficient on some computer systems. A 
more general solution is to write a subroutine to convert lowercase alphabetic letters to uppercase, 
based on ICHAR and CHAR, which do not rely on the ASCII code. The subroutine ToUpper in the 
next program does this. It uses ICHAR( 'A') and ICHAR( 'a' ) to determine the "distance" 
between the upper- and lowercase letters (assuming all the letters of one case to be contiguous, i.e.to 
have consecutive codes). It then adds this distance to all the lowercase letters in the word—carefully 
avoiding uppercase letters and all non-letters. To test it, the program reads two words from the 
keyboard (e.g. NAPOLEON and bonaparte), prints them in "ascending" order as they are, converts 
them both to uppercase, and prints them in order again. 

   
IMPLICIT NONE 
CHARACTER (10) Word1, Word2 
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READ*, Word1 
READ*, Word2 
 
IF (Word1 < Word2) THEN 
  PRINT*, Word1, Word2 
ELSE 
  PRINT*, Word2, Word1 
END IF 
 
CALL ToUpper( Word1 ) 
CALL ToUpper( Word2 ) 
 
IF (Word1 < Word2) THEN 
  PRINT*, Word1, Word2 
ELSE 
  PRINT*, Word2, Word1 
END IF 
 
CONTAINS 
  SUBROUTINE ToUpper( String ) 
    CHARACTER (LEN = *) String 
    INTEGER I, Ismall, IBIG 
    Ismall = ICHAR( 'a' ) 
    IBIG = ICHAR( 'A' ) 
     
    DO I = 1, LEN( String ) 
      IF (String(I:I) >= 'a' .AND. String(I:I) <= 'z') THEN 
        String(I:I) = CHAR( ICHAR( String(I:I) ) + IBIG - Ismall ) 
      END IF 
    END DO 
 
  END SUBROUTINE 
END 

   
Note that an individual character may be referenced as a substring (String(I:I)) and that a 
character dummy argument in a subprogram may be declared with an asterisk to have an assumed 
length. The intrinsic function LEN returns the actual length of the argument. 
The Bubble Sort of Chapter 9 can easily be amended to sort words alphabetically. Suppose we have 
up to 100 words each of 10 letters or less (they can be read from a text file). List must now be 
declared in the main program as follows: 

   
CHARACTER (10), DIMENSION (100) :: List 

   
The corresponding dummy argument in the subroutine BUBBLE_SORT must be declared as 

   
CHARACTER (*), DIMENSION(:), INTENT(INOUT) :: X 

   
The variable TEMP in the subroutine must be declared CHARACTER (10) (alternatively, it could 
be passed as an argument and declared with an assumed length). Finally, you should incorporate 
ToUpper if the words will be of mixed case. 
Note incidentally, that blanks in words are significant, so that 

   
Mc Bean < McBean 

   
since the blank precedes the letters. 

11.4. Graphs Without Graphics 
   
The following example shows how easily a simple graph can be drawn on the text screen (it could 
also be written to a file, or the printer). It makes use of an internal file and character substrings to 
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draw a sine graph over one period. This technique can only draw graphs with no more than one 
plotting symbol per line of output. A more general graphing procedure is discussed in Chapter 15. 

   
CHARACTER (70) Line 
REAL, PARAMETER :: Pi = 3.1415927 
REAL dx, X 
INTEGER N, Trips 
10  FORMAT( A70 ) 
 
dx = Pi / 20 
Trips = INT( 2*Pi/dx + dx/2 ) + 1 
X = 0 
 
PRINT "(' X', T37, 'SIN(X)')"           ! heading 
PRINT* 
 
DO I = 1, Trips 
  WRITE( Line, '(F4.2)' )X              ! Line is an internal file 
  N = NINT( 25 * (1 + SIN(X)) ) + 15 
  Line(40:40) = ':' 
  Line(N:N) = '*' 

   
 
Figure 11.1 Graph on the text screen  
   
X                      SIN(X) 
 
0.00                       *                                
0.15                       :   *                            
0.31                       :       *                        
0.47                       :          *                     
0.62                       :              *                 
0.78                       :                 *              
0.94                       :                   *            
1.10                       :                     *          
1.26                       :                       *        
1.41                       :                        *       
1.57                       :                        *       
1.73                       :                        *       
1.88                       :                       *        
2.04                       :                     *          
2.20                       :                   *            
2.36                       :                 *              
2.51                       :              *                 
2.67                       :          *                     
2.83                       :       *                        
2.98                       :   *                            
3.14                       *                                
 
   PRINT 10, Line 
   X = X + dx 
END DO 
 
END 

   
Part of the output is shown in Figure 11.1. 

11.5. Word Count and Extraction 
   
When the authorship of a piece of prose is uncertain it sometimes helps to calculate the average 
number of words per sentence, and the standard deviation of this statistic. A first-year class of mine 
once found that with samples of about 700 lines, G.K. Chesterton is easily distinguishable from Lord 
Macaulay, the former having a significantly shorter mean sentence length, with a larger standard 
deviation. One of the exercises at the end of the chapter invites you to write a program to compute 
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the average sentence length of a sample of text. An important part of the problem is to detect, extract 
and count whole words in the text. The next program reads a text file of any length, prints out one 
word per line (to indicate that whole words have been extracted), counting them as it does so.  
It is assumed that words are separated by at least one blank—a word is defined as a string of one or 
more non-blank characters. So punctuation marks, like commas and full stops will not be counted as 
separate words, as long as they are not preceded by blanks. However, punctuation marks are filtered 
out before printing a word. 
The most important part of the problem is to detect complete words. This takes time to think out. It 
often helps to think how you would explain the problem (not even the answer) to someone who 
didn't know the first thing about it. Imagine a stream of characters coming past you. How would you 
know when a complete word had passed? Surely, when a non-blank changes to a blank—it's the 
change from non-blank to blank that signals the end of a word. Realizing this will give you the Aha! 
experience that problem solvers rave about. So the essence of the problem is to read the text one 
character at a time, keeping a record of the previous character (OldCh) in order to compare it with 
the current character (Ch). If the previous character is non-blank when the current one is blank, 
we've found another word. 
The rest is just mopping up. OldCh must be initialized to a blank, to start the ball rolling. If the last 
character in the text is a non-blank, the above argument will not catch the last word, so it's necessary 
to check for this after completion of the DO WHILE loop. 
Non-advancing READ must be used to get one character at a time. The IOSTAT specifier returns a 
value of –1 under FTN90 when the end-of-file is encountered. 
The intrinsic function INDEX is used to determine whether the current character is alphabetic. In the 
form used here it has two arguments. The first is a character constant LETTER, consisting of all the 
upper- and lowercase letters. The second is the current character Ch. INDEX returns the position of 
Ch in LETTER if it occurs there, or zero otherwise. 

   
IMPLICIT NONE 
CHARACTER OldCh, Ch 
CHARACTER :: BL = " " 
CHARACTER (*), PARAMETER :: LETTER = & 
            "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" 
INTEGER   :: WORDS = 0 
INTEGER   :: IO = 0 
 
OPEN( 1, FILE = 'TEXT' ) 
OldCh = BL 
 
DO WHILE (IO /= -1)                        ! check for EOF 
  READ (1, '(A1)', IOSTAT = IO, ADVANCE = 'NO') Ch 
  IF (IO == 0) THEN                  ! protect against EOR and EOF 
    IF (Ch == BL .AND. OldCh /= BL) THEN   ! arrival of blank ...         
      WORDS = WORDS + 1                    ! ... signals end of      
                                           !   word 
      PRINT*                               ! new line                     
    ELSE IF (INDEX( LETTER, Ch ) /= 0) THEN! Ch must be a letter          
      WRITE (*, '(A1)', ADVANCE = 'NO') Ch ! part of word                 
    END IF                                                                
    OldCh = Ch                                                            
  END IF 
END DO 
 
IF (OldCh /= BL) THEN ! if last char actually read is non-blank .. 
  WORDS = WORDS + 1   ! ... count another word    
  PRINT*              ! new line                  
END IF 
 
PRINT* 
PRINT*, 'No of words: ', WORDS 
END 
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11.6. General Information 

Character substrings 
   
Suppose the following character variable has been declared: 

   
CHARACTER (80) TEXT 

   
Individual characters in TEXT may be referenced using a substring notation, e.g. TEXT(I:J) 
references a substring of TEXT from the Ith character to the Jth one. If I is greater than J, the 
substring is empty. The colon is obligatory, but there are default values of the subscripts, e.g.  

   
TEXT(:J)              ! same as TEXT(1:J) 
TEXT(J:)              ! same as TEXT(J:80) 
TEXT(:)               ! same as TEXT(1:80) or TEXT 

   
A substring may be formed from a character constant, e.g. 

   
"NAPOLEON"(3:6) 

   
returns POLE. 
Following are some examples of substring expressions and assignments: 

   
TEXT = "abcdefghijk" 
TEXT(1:3) = "XY"       ! returns "XY defghijk"  
                       ! (blank at 3rd position)      
TEXT(5:5) = "*"        ! returns "XY d*fghijk"  
                       ! (replaces 5th character)     
TEXT(5:) = TEXT(6:)    ! returns "XY dfghijk"   
                       ! (deletes 5th character)      
TEXT(8:7)              ! returns "" (null)                            

   
To insert a character at position I, each character beyond I must be moved up one position first, in 
a DO loop: 

   
CHARACTER (80) :: LINE = "abcdefghijklm" 
I = 5 
 
DO J = LEN_TRIM( LINE ), I, -1 
  LINE( J+1:J+1 ) = LINE(J:J) 
END DO 
 
LINE(I:I) = "*"     ! returns "abcd*efghijklm" 

   
The intrinsic function LEN_TRIM returns the length of its string argument with trailing blanks 
removed (otherwise J+1 goes out of range in the loop). Incidentally, can you see why the DO loop 
has to work backwards? 
If substring ranges overlap in an assignment, the original values are always used on the right-hand 
side, e.g. 

   
TEXT(1:8) = "NAPOLEON" 
TEXT(3:5) = TEXT(1:3)   ! returns "NANAPEON" (not in FORTRAN 77) 

   
Substrings may be passed by reference to subprograms, i.e. changes to them in the subprogram are 
reflected on return. However, this means that in a call such as  

   
CALL JUNK( NAME(1:5), NAME(3:9) ) 

   
the characters common to both actual arguments, i.e. NAME(3:5), may not be changed through 
either corresponding dummy argument in the subprogram.  
An array of characters may be declared:array: 
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CHARACTER (80), DIMENSION(60) :: LINE 

   
Then the Ith character of the array element LINE(J) is referenced as  

   
LINE(J)(I:I) 

   
Note that the array subscript precedes the substring subscripts.  

Assumed character length 
   
We have already seen that a dummy character argument may be declared with an assumed length. A 
named character constant (parameter) may also be declared with an assumed length, if you can't be 
bothered to count the number of characters. E.g.  

   
SUBROUTINE JUNK( Word ) 
  CHARACTER (*), INTENT(IN) :: Word 
  CHARACTER (*), PARAMETER :: Message = "Can't open file" 

Concatenation 
   
The concatenation operator (//) is the only intrinsic operator for character expressions, e.g. 

   
CHARACTER (5)  :: Initials = "JK" 
CHARACTER (20) :: Surname = "Smith" 
CHARACTER (7)  :: RegNo = "123456K" 
CHARACTER (9)  :: UserId  
UserId = Initials(1:1) // Surname(1:1) & 
                       // RegNo  ! returns "JS123456K" 

   

Embedded format 
   
Character expressions may be used to construct format specifications during program execution. The 
next code fragment reads an integer, and prints it out as an ordinal number with the correct suffix, 
e.g. 23 is output as 23rd, while 24 is output as 24th:  

   
CHARACTER (2), DIMENSION(0:9) & 
                             :: SUFF = (/ 
'th', 'st', 'nd', 'rd', & 'th', 'th', 'th', 'th', 'th', 'th' /)  
CHARACTER (10) :: FMT = "(I5, '??')" 
READ*, N 
LastDigit = MOD( N, 10 ) 
FMT(7:8) = SUFF( LastDigit )   ! replace ?? appropriately 
PRINT FMT, N 

Character array constructors 
   
The elements of a character array in a constructor must all have the length specified by the length 
parameter. Pad with blanks if necessary: 

   
CHARACTER (6), DIMENSION(3) :: Primary = (/ "RED   ", "BLUE  ", & 
                                            "YELLOW" /)  

Character handling intrinsic functions 
   
Fortran 90 has a number of new intrinsic functions relating to strings of characters, which greatly 
enhance its string-handling capabilities, putting it on a par with languages such as Pascal and C. A 
brief description of what they can do is given here; details are in Appendix C.  
ADJUSTL adjusts left to return a string with leading blanks removed and inserted as trailing blanks. 
ADJUSTR adjusts right. 
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INDEX returns the starting position of the first (or last) occurrence of a substring in a string. 
LEN returns the length of a string. 
LEN_TRIM returns the length of a string without its trailing blanks. 
REPEAT returns a string formed from multiple concatenations of a string, e.g. REPEAT( "X", 3 
) returns XXX. 
SCAN returns the position of the left- or rightmost character of one string which appears in another. 
TRIM returns a string with all its trailing blanks removed. 
VERIFY returns zero if each character in one string appears in another string, or the position of the 
left- or rightmost character of one string which does not appear in another string. E.g. 

   
CHARACTER (*), PARAMETER :: LETTER = & 
          "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" 
CHARACTER (10) Word 
IF (VERIFY( Word, LETTER ) == 0) PRINT*, 'It''s a word!' 

   
The intrinsic subroutine DATE_AND_TIME (DATE, TIME, ZONE, VALUES) returns the date and 
time in various forms.  
Recall that a number can be converted to its string representation and vice versa by writing to or 
reading from an internal file. 

Chapter 11 Summary 
   
• The set of available characters is ordered into one or more collating sequences. 
• Fortran 90 provides access to the ASCII collating sequence. 
• Character variables may be compared and ordered on the basis of the collating sequence. 
• Character substrings may be referenced. 
• Character expressions may be concatenated. 
• Character constants and dummy arguments may be declared with an assumed length, using an 

asterisk.  
• Fortran 90 has a powerful set of character handling intrinsic functions. 
• Format specifications may be constructed at runtime, using character variables. 

Chapter 11 Exercises 
   

11.1      Write a program which reads some text (e.g. one line into a variable CHARACTER (80) 
LINE) and counts the number of blanks in it.  
Extend it to remove the blanks. 
11.2      Write a program which reads a sentence (ending in a full stop) and prints it backwards, 
without the full stop. 
You might like to extend your program to check whether a sentence is a palindrome, i.e. one which 
reads the same palindrome backwards as forwards, such as REWARD A TOYOTA DRA WER 
(someone who draws Toyotas, presumably), or Napoleon's classic lament, ABLE WAS I ERE I 
SA W ELBA. Assume there is no punctuation, and remove all the blanks first. 
11.3      A formula, called Zeller's Congruence, may be used to compute the day of the week, given 
the date (within a certain range of dates). The formula is  

[ ] [ ] [ ]( )f m k y y c c= − + + + + −2 6 0 2 4 4 2. . / /  modulo 7
where the square brackets denote the 

integer part and 
• m is the month number, with January and February taken as months 11 and 12 of the preceding 

year, so March is then month 1, and December month 10;  
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• k is the day of the month;  
• c is the century number;  
• y is the year in the century;  
• f = 0 means Sunday, 1 means Monday, etc. 

   
E.g. 23rd August 1963 is represented by m = 6, k = 23, c = 19, y = 63; 1st January 1800 is 
represented by m = 11, k = 1, c = 17, y = 99.  
Write a program to read the date in the usual form (e.g. 27 3 1993 for 27th March 1993) and write 
the given date and the day of the week (in words) on which it falls. Hint: use an array of characters 
for the days of the week. Test your program on some known dates, like today's date, or your 
birthday, or 7th December 1941 (Sunday).  
The formula will not work if you go too far back. Shakespeare and Cervantes both died on 23rd 
April 1616. Shakespeare died on a Tuesday, but Cervantes died on a Saturday! This is because 
England had not yet adopted the Gregorian calendar and was consequently ten days behind the rest 
of the world. The formula will also not work if you go too far forward. 
11.4      Write a program which will read a number in binary code of arbitrary length (e.g. 1100—no 
blanks between the digits) and write its decimal value (12 in this case). Hint: read the number as a 
string, and use an internal file to read the individual characters as integers.  
11.5      Write a program to convert the contents of a text file to uppercase. You can try it out on the 
following text if you like: 
Roses are red 
violets are blue 
I'm schizophrenic 
and so am I. 

11.6      Write a program which reads some text from a file, removes all the blanks, and prints it out 
in five-letter groups, separated by blanks. E.g. the text 
Twas brillig and the slithy toves 
did gyre and gimble in the wabe... 

should be printed as 
Twasb rilli gandt hesli thyto vesdi dgyre andgi mblei nthew abe 

11.7      Student numbers at the University of Cape Town are constructed from the first letter and 
next two consonants of the student's surname, the first three letters of her first name (padded from 
the right with Xs if necessary, in both cases), followed by a three-digit number, left-filled by zeros if 
necessary, to distinguish students for whom these six characters are the same. E.g. Napoleon 
Onaparte could get the student number ONPNAP001, while Charles Wu could get WXXCHA001. 
Write a program which reads a student's surname and first name, in some convenient way, and prints 
out her student number (you can assume the suffix 001 for everyone). 
11.8      Sometimes it is convenient to "pack" character and numeric data into strings. Such strings 
need to be "unpacked" again. Write a program to read a line of text containing a student's surname 
and initials, terminated by a comma, and followed by two marks, separated by at least one blank, 
e.g. 

   
Smith JR, 34.6   78.9 
 

   
The program should unpack the string into a character variable for the name and initials, and two 
real variables for the marks.  
11.9      Write a program to read text from a file and compute the average number of words per 
sentence, and its standard deviation. Assume that sentences end with full stops, which occur 
nowhere else.  
11.10      Languages exhibit a characteristic frequency distribution of single letters if a large enough 
sample of text is analysed. For example, in Act III of Hamlet the blank has a frequency of 19.7%, 
"e" 9.3%, "o" 7.3%, while "z" occurs only 14 times out of 35224 characters. (The blank is important 
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because it gives an indication of word length.) Write a program to determine the letter frequency of 
a sample of text in a text file. Assume that blanks only occur singly (otherwise you must first reduce 
all multiple blanks to single blanks).  
11.11      Write a program which will read a person's name and address from a disk file and use the 
data to write a "form letter" with a special offer to paint his house. The data in the file should be in 
the form 
Jones 
31 
Campground Rd 

If this data is used, the program output should be as follows: 
Dear Mr Jones  
We will paint your house with Sloshon at half price! 
You can have the smartest house in Campground Rd. 
The Jones family will be able to walk tall again. 
Your neighbours at number 33 will be amazed! 

The items in italics are read (or derived) from the data in the file. 
11.12      Read up about the intrinsic subroutine DATE_AND_TIME in Appendix C. Use it to write a 
function TIS which returns the time in seconds (including milliseconds) elapsed since midnight. 
Such a function could be used to time accurately operations in a program, e.g. sorting. 
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Chapter 12 Introduction 
   

So far we have restricted ourselves to the five intrinsic data types of Fortran 90. We have 
seen how to use simple variables and arrays of these types to solve a variety of problems. 
We may, however, soon discover situations where it would be very convenient to handle 
more complicated collections of data as single units. Arrays, for example, are restricted in 
that all their elements must be of the same type. 
One of the major advances of Fortran 90 over previous versions is that you now have the 
freedom to design data types of your own. Such data types are called derived. In this 
chapter we will discuss derived data types, which may be used to define structures. 
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12.1. Structures 
   
As an example, let's consider the problem of maintaining student records. We have often used 
examples where we have processed, say, a student's name and some marks. In a real situation, 
additional information would be needed: address, registration and telephone numbers, and maybe 
even date of birth and gender. You can define a type to encapsulate all this data for one person as 
follows: 

   
TYPE First_Year                                                                     
  CHARACTER (20) Name                     ! includes initials, etc.                 
  CHARACTER (20), DIMENSION(4) :: Address ! 4 lines for address                     
  CHARACTER (10) Telephone                                                          
  CHARACTER (9) RegNo    ! e.g. SHKWIL001 as in Ex. 12.7 
  LOGICAL Female         ! .TRUE. for female, .FALSE. for male (!)                  
  INTEGER BirthDate      ! e.g. 461121 
  REAL, DIMENSION(20) :: Marks  ! Marks 
END TYPE 

   
This is called the definition of the derived type First_Year. A variable of this type is declared as 
follows  

   
TYPE (First_Year) Student 

   
and is called a structure. In this case it has seven components: Name, Address, etc. Note that the 
seventh component is a real array, for up to 20 marks. The components are referenced with the 
component selector (%). E.g. 

   
Student % Birthdate = 461121 
 

   
The components may appear in any expression where a variable of the same type (as the component) 
would be appropriate. 
We can even declare an array of our derived type: 

   
TYPE (First_Year), DIMENSION (100) :: Class 

   
Since an array section may end with a structure component, the statement 

   
Class % Female = .FALSE. 

   
will then, for example, set the whole class' gender to male. 
To illustrate some more of the properties of structures, let's define a simpler derived type: 

   
TYPE Student_Type 
  CHARACTER (20) NAME 
  REAL Mark 
END TYPE 

   
Derived types have literal constants, e.g. 

   
Student_Type( "Smith, JR", 49 ) 

   
The order of components must follow their order in the definition. Although individual components 
may be assigned using the component selector, as above, all the components may be assigned from 
the constant using a structure constructor, either in an initialization, or in an ordinary assignment: 

   
TYPE (Student_Type) :: Student1 = Student_Type( "Bloggs", 50 ) 

   
A variable of a derived type may appear in an I/O list, as long as there is an appropriate format 
specification for each component: 
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PRINT '(A20, F6.0)', Student1 
   
A variable of a derived type may be assigned to another variable of the same type: 

   
Student2 = Student1 

   
All the components of Student2 are replaced by the corresponding components of Student1. 

Defined assignments (overloading) 
   
We have just seen that the intrinsic assignment operator (=) is automatically available for derived 
types. We can, however, redefine the assignment operator, by overloading it. This feature of Fortran 
90, as well as general operator overloading, which is present in object-oriented programming 
languages like C++, will astonish Fortran 77ers. It may take a little getting used to.  
Suppose, as a simple illustration, we want to redefine the assignment for Student_Type in two 
ways. First, we would like a short-hand way of assigning a name directly, without using the 
component selector, or a constructor, e.g.  

   
Student = "Smith, JR" 

   
on the understanding that no value is assigned to the mark.  
Second, we would like to extract the name directly from the variable, again without using the 
component selector, e.g. 

   
StuName = Student 

   
where StuName is a character variable.  
What this amounts to is a redefinition of the assignment operator to handle mixed types—character 
and derived—in the same way that the intrinsic assignment operator can already handle mixing of 
certain types. 
For the first case, we need a subroutine Student_From_Name, say, with two dummy arguments, 
which are of type Student_Type and character. The order of dummy arguments is important, and 
must be the same as the order in which the types appear in the assignment to be redefined. This 
subroutine should assign Student % Name explicitly to the character argument. 
For the second case, we need a subroutine Name_From_Student, say, with dummy arguments of 
type character and Student_Type (reverse order now). This subroutine should assign its 
character argument to Student % Name. 
The most efficient way to handle this is to set up a module with the Student_Type definition and 
the two subroutines: 

   
MODULE StudentMod 
 
TYPE Student_Type 
  CHARACTER (20) NAME 
  REAL Mark 
END TYPE 
 
INTERFACE ASSIGNMENT(=) 
  MODULE PROCEDURE Name_From_Student, Student_From_Name 
END INTERFACE 
 
CONTAINS 
  SUBROUTINE Name_From_Student( String, Student ) 
    CHARACTER (*) String 
    TYPE (Student_Type) Student 
    String = Student % Name 
  END SUBROUTINE 
 
  SUBROUTINE Student_From_Name( Student, String ) 
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    CHARACTER (*) String 
    TYPE (Student_Type) Student 
    Student % Name = String 
  END SUBROUTINE 
END MODULE 

   
An interface block, using the keyword ASSIGNMENT, is required to overload the assignment 
operator with these two subroutines. It is shown here in the module, although it could also be in the 
main program.  
A complete main program is then: 

   
USE StudentMod 
  
TYPE (Student_Type) :: Student = Student_Type( "Bloggs", 50 ) 
CHARACTER (20) StuName 
 
Student = "Smith, JR"    ! assigns only the name in one direction 
StuName = Student        ! assigns only the name in the 
                         ! other direction 
 
PRINT '(A20, F6.0)', Student 
PRINT*, StuName 
END 

   
Note that subroutines are needed to redefine the assignment operator. Other operators are redefined 
with functions, as we shall see now. 
Assignment for intrinsic types may not be redefined.  

Defined operators (overloading) 
   
Operators may be defined for derived types in a similar, although not identical, way. 
Consider the following example, adapted from the FTN90 Reference Manual. The module 
IntegerSets defines a type SET (similar to the set type of Pascal). Variables of this type can 
be constructed from the integers with the function BuildSet. A set membership operator (.IN.) 
is defined (e.g. I.IN.S1 returns TRUE if the integer I is a member of the set S1). The * operator 
is overloaded with the operation of set intersection (so that, for example, S1*S2 returns elements 
which are members of both S1 and S2).Overloading in this context means that the operator retains 
its original intrinsic meaning when the operands are intrinsic types (integer, real or complex in this 
case), but that it has a new meaning when the operands are of the derived type.  

   
MODULE IntegerSets 
 
IMPLICIT NONE 
INTEGER, PARAMETER :: MaxCard = 100 
 
TYPE SET 
  PRIVATE 
  INTEGER Cardinality 
  INTEGER, DIMENSION( MaxCard ) :: Members 
END TYPE SET 
 
INTERFACE OPERATOR (.IN.)  
  MODULE PROCEDURE MemberOf 
END INTERFACE 
 
INTERFACE OPERATOR (*) 
  MODULE PROCEDURE Intersect 
END INTERFACE 
 
CONTAINS 
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FUNCTION BuildSet( V ) 
  TYPE (SET) BuildSet 
  INTEGER V(:) 
  INTEGER J 
  BuildSet % Cardinality  = 0 
  DO J = 1, SIZE( V ) 
    IF (.NOT.(V(J) .IN. BuildSet)) THEN 
      IF (BuildSet % Cardinality < MaxCard) THEN 
        BuildSet % Cardinality = BuildSet % Cardinality + 1 
        BuildSet % Members( BuildSet % Cardinality ) = V(J) 
      ELSE 
        PRINT*, 'Maximum set size exceeded - adjust MaxCard' 
        STOP 
      END IF 
    END IF 
  END DO 
END FUNCTION BuildSet 
 
FUNCTION Card( S ) 
! returns cardinality of S 
  INTEGER Card 
  TYPE (SET) S 
  Card = S % Cardinality 
END FUNCTION Card 
   
FUNCTION Intersect( S1, S2 ) 
  TYPE (SET) Intersect, S1, S2 
  INTEGER I 
  Intersect % Cardinality = 0 
   
  DO I = 1, S1 % Cardinality 
   IF (S1 % Members(I) .IN. S2) THEN 
    Intersect % Cardinality = Intersect % Cardinality + 1 
    Intersect % Members(Intersect % Cardinality) = S1 % Members(I) 
   END IF 
  END DO 
 
END FUNCTION Intersect 
 
FUNCTION MemberOf( X, S ) 
  LOGICAL MemberOf 
  INTEGER X 
  TYPE (SET) S 
  MemberOf = ANY( S % Members(1 : S % Cardinality) == X) 
END FUNCTION MemberOf 
 
SUBROUTINE PrtSet( S ) 
  TYPE (SET) S 
  INTEGER I 
 
  PRINT '(20I4)', (S % Members(I), I = 1, S % Cardinality) 
END SUBROUTINE PrtSet  
 
END MODULE 

   
A sample main program, with output, follows: 

   
USE IntegerSets                                                             
                                                                                   
TYPE (SET) S1, S2, S3                                                       
                                                                                    
S1 = BuildSet( (/ 1, 2, 3, 4, 5 /) )                                        
S2 = BuildSet( (/ 2, 4, 6, 8 /) )                                           
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S3 = S1 * S2                                                                
                                                                                    
WRITE (*, "('S1:    ', I3, ' ELEMENTS: ')", & 
  ADVANCE = 'NO') Card( S1 )      
CALL PrtSet( S1 )                                                           
WRITE (*, "('S2:    ', I3, ' ELEMENTS: ')", & 
  ADVANCE = 'NO') Card( S2 )      
CALL PrtSet( S2 )                                                           
WRITE (*, "('S1*S2: ', I3, ' ELEMENTS: ')", & 
  ADVANCE = 'NO') Card( S3 )   
CALL PrtSet( S3 )                                                        
                                                                                    
END                                                                         

   
Output: 

   
S1:      5 ELEMENTS:    1   2   3   4   5 
S2:      4 ELEMENTS:    2   4   6   8     
S1*S2:   2 ELEMENTS:    2   4             

   
There are a number of very important points to note. 
• The PRIVATE statement makes the components of the derived SET type inaccessible outside 

the module. This means it is possible to change the type definition without having to change any 
code that uses it.  

• The function Card allows the cardinality of a set to be accessible outside the module. 
• To define a binary operator on a derived type a function must be defined that specifies how the 

operator works. The only novelty is being able to replace the conventional statement 
   

S3 = Intersect( S1, S2 ) 
   
   

 
   
   
with the much more natural syntax 

   
S3 = S1 * S2 

   
   

 
   
This is achieved by associating the function name with the operator token in an interface block, 
using the keyword OPERATOR: 

   
INTERFACE OPERATOR (*) 
  MODULE PROCEDURE Intersect 
END INTERFACE 

   
A function defining a unary operator would obviously have only one argument. 
• The defined operator token (i.e. a sequence of characters) may be any one of the tokens used for 

the intrinsic operators, or a sequence of up to 31 letters enclosed in decimal points, such as 
.IN. above. 

 If an intrinsic token is used, the number of arguments and priority is the same as for the intrinsic 
operation. Otherwise, defined unary (binary) operators have the highest (lowest) priority. 

 An operation that is defined on intrinsic types cannot be redefined. For example, since the 
operation X * Y is defined intrinsically for arrays, the operator * cannot be redefined as a 
scalar product. You must either use a different token, or define a new type.  

• In this example, the set is implemented as a fixed length array. It could however just as easily be 
represented by a linked list, which would not require the module to be recompiled.  
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Structure-valued functions 
   

Note incidentally, from the previous example, that a function may be structure-valued, i.e. it 
may return the value of a derived type.  
We will see further examples of derived types, assignment and operator overloading, and 
structure- and array-valued functions in Chapter 15. 

The TYPE statement 
   
The general form of a derived type definition is 

   
TYPE  [[, access] ::] typename 
    [ PRIVATE ] 
     component definitions 
   END TYPE [typename] 

   
By default a type and all its components are accessible (PUBLIC access).  
The access qualifier PRIVATE or the PRIVATE statement may only appear if the type is defined in 
a module. If the type is specified as PRIVATE then both the type name, the structure constructor for 
the type, and all its components are accessible only in the host module. If the PRIVATE statement 
appears in the definition, all the components are accessible only in the host module.  
The advantage of a public type with PRIVATE components is that changes may be made to the type 
definition without affecting the code which accesses it. If the derived type is only used internally by 
the module, the access qualifier should be PRIVATE, preventing unintentional use of its name 
outside the module.  

Objects and sub-objects 
   
The time is right for a few more definitions. 
We have seen that components of derived type may be arrays. E.g. the type First_Year defined 
at the beginning of the chapter has a component  

   
REAL, DIMENSION(20) :: Marks ! Marks 

   
Arrays of derived type may also be declared, e.g. 

   
TYPE (First_Year), DIMENSION (100) :: Class 

   
An element of this array, say Class(17), is regarded in Fortran 90 as a scalar, because it is in a 
sense a single structure, although it has a component which is an array (it could even have a 
component which is another derived type). 
An entity which is not part of a bigger entity has a name and is called a named object. Its sub-objects 
have designators consisting of the name of the object followed by one or more qualifiers, e.g. 
Class(3:6), Class(5) % BirthDate. 
Consequently, in Fortran 90 the term array now means any object that is not scalar, including an 
array section, or an array-valued component of a structure. The term variable now means any named 
object that is not specified to be a constant, and any part of such an object, including array elements, 
array sections, structure components and substrings. 

 
12.2. A Database: Student Records 

   
In this section we combine the elegance of Fortran 90 derived types with direct access files to build 
a program to illustrate the basic principles of setting up, displaying, and updating a database.  
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Suppose we want to set up a database of student records (by record we mean the information 
relating to each student). For simplicity let's record each student's name (including initials), and one 
integer mark (in practice this is more likely to be an array of marks). The obvious vehicle for this is 
a derived type, similar to that defined in the previous section:  

   
TYPE StudentRecord  
  CHARACTER (NameLen)  Name 
  INTEGER              Mark 
END TYPE StudentRecord 

   
We need a collection of subroutines to read and write variables of this type to and from a direct 
access file. The program template follows. Details of the subroutines are filled in below. For ease of 
presentation the subroutines are internal. This also makes it easier for you to run and develop the 
program. Consequently, the file is opened once, at the beginning of the program, and closed only at 
the end. In a real application, the subroutines would probably be in a module, with some global 
declarations, such as the type definition, the file name, etc. In that case, each subroutine which 
handles the file should open and close it.  
The program outline is:  

   
PROGRAM Student_Records 
IMPLICIT NONE 
 
INTEGER, PARAMETER :: NameLen = 20 
 
TYPE StudentRecord 
  CHARACTER (NameLen)  Name 
  INTEGER              Mark 
END TYPE StudentRecord 
 
TYPE (StudentRecord) Student  
INTEGER              EOF, RecLen, RecNo 
LOGICAL              IsThere 
CHARACTER (NameLen)  FileName 
CHARACTER            Ans 
CHARACTER (7)        FileStatus 
CHARACTER (*), PARAMETER :: NameChars = & 
            " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" 
            
INQUIRE (IOLENGTH = RecLen) Student 
WRITE (*, "('File name: ')", ADVANCE = "NO") 
READ*, FileName 
INQUIRE (FILE = FileName, EXIST = IsThere) 
 
IF (IsThere) THEN             
 WRITE (*, "('File already exists. Erase and recreate (Y/N)? ')", & 
               ADVANCE = "NO")     
 READ*, Ans 
 IF (Ans == "Y") THEN 
   FileStatus = "REPLACE"          ! erase and start again 
 ELSE 
   FileStatus = "OLD"              ! update existing file 
 END IF 
ELSE 
 FileStatus = "NEW"                ! it isn't there, so create it 
END IF 
 
OPEN (1, FILE = FileName, STATUS = FileStatus, & 
       ACCESS = 'DIRECT', RECL = RecLen) 
Ans = ""                           ! make sure we get started 
 
DO WHILE (Ans /= "Q") 
  PRINT*                               
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  PRINT*, "A: Add new records"         
  PRINT*, "D: Display all records"     
  PRINT*, "Q: Quit"                    
  PRINT*, "U: Update existing records" 
  PRINT* 
  WRITE (*, "('Enter option and press ENTER: ')", ADVANCE = "NO")     
  READ*, Ans 
  SELECT CASE (Ans) 
    CASE ("A", "a")  
      CALL AddRecords 
    CASE ("D", "d") 
      CALL DisplayRecords 
    CASE ("U", "u") 
      CALL UpDate 
  END SELECT 
END DO                                       
 
CLOSE (1) 
 
CONTAINS 
  SUBROUTINE AddRecords 
    ... 
  SUBROUTINE DisplayRecords 
    ... 
  SUBROUTINE ReadIntCon( Num ) 
    ... 
  SUBROUTINE StripBlanks( Str ) 
    ... 
  SUBROUTINE UpDate 
    ... 
END  

   
The length of the component Name of StudentRecord is declared as a named constant 
NameLen because this value is used in a number of other declarations. 
The basic variable in the program is Student, of type StudentRecord. An INQUIRE 
statement determines its record length for the subsequent OPEN statement.  
The user is asked for the file name of the database. Another INQUIRE statement determines 
whether or not the file exists. A value is set for the STATUS specifier in the OPEN statement, 
depending on whether the file is to be replaced, updated or created, after which the file is opened. If 
the value of STATUS has been correctly set, the OPEN must succeed; otherwise you need to cater for 
error recovery with the IOSTAT and/or ERR specifiers. 
Next, a menu is presented. The ideal construct for this is DO WHILE. The user enters a single letter 
response. A CASE construct selects the appropriate subroutine. An important point to note here is 
that the response may be in lower- or uppercase. Since other responses will be required in the 
program, it makes sense to write a function to convert the response to uppercase, say, before testing 
it. I tried to include such a function,  

   
FUNCTION ChToUpper( Ch ) 
    ! converts a single lowercase character to uppercase 
    ! leaves all other characters unchanged 
    CHARACTER  Ch, ChToUpper  
    ChToUpper = Ch 
    SELECT CASE (Ch) 
      CASE ( "a":"z" ) 
        ChToUpper = CHAR( ICHAR(Ch) + ICHAR("A") - ICHAR("a") ) 
    END SELECT 
  END FUNCTION ChToUpper 

   
but a bug in the FTN90 compiler caused a run-time error when it was included in the database 
program (although it ran successfully on its own in a test program).  
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When the user quits, the database file is closed. 
Now for the subroutines. AddRecords adds new records, either at the end of an existing database, 
or at the beginning of a new one.  

   
SUBROUTINE AddRecords 
    RecNo = 0 
    EOF = 0                  ! remember to initialize 
 
    DO WHILE (EOF == 0) 
      READ( 1, REC = RecNo+1, IOSTAT = EOF )   
      IF (EOF == 0) THEN     ! read succeeded, so ... 
        RecNo = RecNo + 1    ! ... only increment RecNo here 
      END IF 
    END DO        
 
    RecNo = RecNo + 1                       ! next record to write 
    Student = StudentRecord( "a", 0 )       ! satisfy DO WHILE 
    DO WHILE ((VERIFY( Student % Name, NameChars ) == 0))  
      PRINT*, "Name (any non-letter/non-blank to end): "                 
      READ "(A20)", Student % Name                             
      IF (VERIFY( Student % Name, NameChars ) == 0) THEN   
        PRINT*, "Mark: "                                       
        CALL ReadIntCon( Student % Mark ) 
        WRITE (1, REC = RecNo) Student                         
        RecNo = RecNo + 1                                      
      END IF                                                   
    END DO                                                     
  END SUBROUTINE AddRecords 

   
Fortran 90 unfortunately has no way of determining the number of records in a file, other than by 
reading past all of them. The first DO WHILE sets RecNo to the number of records in the file. Note 
that a READ with no input list skips past a record; this saves time.  
EOF must be initialized to zero on entry to the subroutine, because it is a global variable, so it will 
usually have a non-zero value from the last time the end-of-file was encountered. This provides a 
good reason for declaring EOF locally —to force you to initialize it correctly. 
A DO WHILE loop accepts students' names from the keyboard. In this example, it is assumed that 
names will consist only of letters or blanks (e.g. between the surname and initials). So any character 
other than a letter or a blank will end the loop. VERIFY ensures that only a genuine name is written 
to the file. 
Remember that READ* assumes that a string without delimiters is terminated by a blank, so if you 
want to read blanks as part of the string you must either use a formatted READ or enclose the string 
in delimiters.  
Both components of Student are written to record number RecNo by the single WRITE 
statement—after which RecNo must be incremented. 
If you ever have to write a program of this nature which other people will use, you will soon 
discover that most of your programming effort will go into anticipating and trapping their stupid 
mistakes. In particular, a crash must be avoided if the user makes an invalid response. The short 
subroutine ReadIntCon makes use of the IOSTAT specifier to intercept a READ error: 

   
  SUBROUTINE ReadIntCon( Num ) 
    INTEGER Err, Num 
    Err = 1                       ! remember to initialize 
    DO WHILE (Err > 0) 
      READ (*, *, IOSTAT = Err) Num 
      IF (Err > 0) PRINT*, "Error in mark - re-enter" 
    END DO 
  END SUBROUTINE ReadIntCon   
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DisplayRecords uses a DO WHILE construct to read and display the file contents. The end-of-
file is detected by theIOSTAT specifier:  

   
SUBROUTINE DisplayRecords 
    RecNo = 1 
    EOF = 0                        ! remember to initialize 
    DO WHILE (EOF == 0)                                    
      READ (1, REC = RecNo, IOSTAT = EOF) Student          
      IF (EOF == 0) THEN                                   
        PRINT "(A20, I3)", Student                ! READ succeeded  
      END IF                                               
      RecNo = RecNo + 1                                    
    END DO                                                   
  END SUBROUTINE DisplayRecords 

   
The subroutine UpDate takes care of updating a student's record (in this example, only his single 
mark may be changed, but obviously this can be extended to correcting spelling in his name, etc.): 

   
  SUBROUTINE UpDate 
    CHARACTER (NameLen) Item, Copy 
    LOGICAL Found    
    Found = .false. 
    EOF = 0                      ! remember to initialize 
    PRINT*, "Update who?" 
    READ "(A20)", Item 
    CALL StripBlanks( Item ) 
    RecNo = 1 
    DO WHILE (EOF == 0 .AND. .NOT. Found) 
      READ (1, IOSTAT = EOF, REC = RecNo) Student 
      IF (EOF == 0) THEN 
        Copy = Student % Name 
        CALL StripBlanks( Copy )  ! leave his name as is 
        IF (Item == Copy) THEN 
          Found = .true.                               ! found him 
          PRINT*, 'Found at recno', RecNo, ' Enter new mark:' 
          CALL ReadIntCon( Student % Mark )            ! new mark 
          WRITE (1, REC = RecNo) Student               ! rewrite 
        ELSE 
          RecNo = RecNo + 1         
        END IF 
      END IF 
    END DO 
    IF (.NOT. Found) THEN 
      PRINT*, Item, ' not found' 
    END IF 
  END SUBROUTINE UpDate 

   
UpDate asks for the name of the student whose mark is to be changed, and then searches for that 
student. The logical variable Found will be set to TRUE if the student is found. Initially, it must be 
set to FALSE. You may be tempted here to have an initialization expression in its declaration, e.g. 

   
LOGICAL :: Found = .false. 

   
However, this automatically gives LOGICAL the SAVE attribute, i.e. its value is retained between 
calls to UpDate. This would give it the value TRUE on entry again after a successful search, 
making it impossible to execute the DO WHILE. 
The name to be searched for is read into Item. You may want to build in some embellishments here 
to facilitate getting an exact match with the name in Student % Name. For example, all the 
characters in Item and Student % Name could be converted to uppercase before searching. In 
this example, all blanks are removed by StripBlanks: 
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  SUBROUTINE StripBlanks( Str ) 
    CHARACTER (*) Str 
    INTEGER I 
    I = 1 
    DO WHILE (I < LEN_TRIM( Str ))  ! null str won't matter 
      IF (Str(I:I) == " ") THEN 
        Str(I:) = Str(I+1:)         ! don't increase I yet  
      ELSE 
        I = I + 1 
      END IF 
    END DO 
  END SUBROUTINE StripBlanks 

   
There is only one subtlety in this routine. If a blank is found in position I, it is removed with the 
substring operation  

   
Str(I:) = Str(I+1:) 

   
However, I must not be incremented, since another blank might have moved up into position I. It 
must therefore be tested again. Only when a blank is not found may I be safely incremented. 
LEN_TRIM returns the length of Str. As blanks are removed this value will of course be reduced.  
To keep matters simple, the searching procedure is the crudest one possible—read each record in the 
file from the beginning, until either a match is found, or the end-of-file is reached. If a match is 
found update the mark and rewrite that record. If no match is found, report so. More sophisticated 
searching procedures are discussed below — you can build them into this program if you like. 
Once UpDate has found a match, the user enters the corrected mark, and the record is rewritten. 
You can easily add other features to this basic skeleton, e.g. printing names and marks, analysing the 
marks, deleting a name, etc. You could also extend the database to include an array of marks.  
Practically the only disadvantage of using a direct access file, as opposed to a text file, is that the 
record length is fixed. So if you wanted to allow for an array of, say, 20 marks, the record length 
must be increased, even though you may never use the extra space. One way out is to create a new 
direct access file each time a new set of marks is entered, with room for only one additional mark, 
and to rename it with the original name. 

12.3. A Binary Search 
   
We have seen already how to sort numbers and words. Items are usually sorted only so that we can 
subsequently search through them for a particular item. An obvious (and easy) method of searching 
is to go through the (sorted) list of items one by one comparing them with the search item. The 
process stops either when the search item is found, or when the search has gone past the place where 
the item would normally be. This is called a linear search. Its disadvantage is that it can be very time 
consuming if the list is long. A much more cunning method is the binary search. 
Suppose you want to find the page in a telephone directory that has a particular name on it. A linear 
search would examine each page in turn from page 1 to determine whether the name is on it. This 
could clearly take a long time. A binary search is as follows. Find the middle of the directory (by 
consulting the page numbers), and tear it in half. By looking at the last name in the left-hand half (or 
the first name in the right-hand half), determine which half the required name is in. Throw away the 
unwanted half, and repeat the process with the half that contains the name, by halving it again. After 
a surprisingly low number of halvings, you will be left with one page containing the required name. 
Although this can be a little heavy on telephone directories, it illustrates the principle of a binary 
search quite well. The method is very efficient. For example, my local directory has 1243 pages with 
subscribers' names and numbers. Since the method halves the number of pages each time, the 
number of halvings (or bisections) required to find a name will be the smallest power of 2 that 
exceeds 1243, i.e. 11, since  
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The smart way to find the maximum number of bisections N required is to observe that N must be 

the smallest integer such that 2 N
 > 1243, i.e. such that N > log2 1243. In the worst possible case, 

the required name would be the last one in the directory. A linear search would involve examining 
all 1243 pages, whereas a binary search requires you to look at only 11 pages!  
Suppose our student database file contains NumRecs records altogether, sorted so that the names 
are in alphabetical order. We would like to search for a given student (e.g. in order to be able to view 
his marks, and change them if necessary). A binary search through the file must try to find the 
record number (Mid) of the required student's name (Item). The lower and upper bounds of the 
record numbers for the search are Lo and Hi respectively. Mid is the average of these two values. 
Successive bisections change the value of either Lo or Hi, keeping the alphabetical position of 
Item between these bounds each time. Since each bisection takes the integer part of Mid, the 
starting value of Hi must be 1 more than the last record number, or the last student can never be 
found. The maximum number of bisections required, NumBis, is found as described above. This 
requires computing a logarithm to the base 2 in terms of the natural logarithm. The formula for this 

is log log / log2 2a ae e= . The coding for the binary search is as follows: 
   
 SUBROUTINE BinSearch( NUnit, Item, Posn ) 
! Binary Search for string Item through all StudentRecord ... 
! ... records on NUnit. 
! Record number of match returned in Posn, which is zero ... 
! ... if no match found. 
 
  CHARACTER (*) Item 
  INTEGER Count, EOF, Hi, Lo, Mid, NumBis, NumRecs, NUnit, Posn 
  LOGICAL Found 
  TYPE (StudentRecord) Student 
 
  EOF = 0                  ! find the number of records NumRecs 
  NumRecs = 0 
  DO WHILE (EOF == 0) 
    READ( NUnit, REC = NumRecs+1, IOSTAT = EOF ) 
    IF (EOF == 0) THEN 
      NumRecs = NumRecs + 1     
    END IF 
  END DO 
 
  NumBis = INT( LOG(REAL(NumRecs)) / LOG(2.0) ) + 1 ! no of  
                                                    ! bisections 
  Count = 0                                    ! counter          
  Found = .false.                                                 
  Posn = 0                                     ! not found yet    
  Lo = 1                                       ! first record     
  Hi = NumRecs + 1                             ! last record + 1  
  DO WHILE (.NOT. found .AND. Count /= NumBis) 
    Mid = (Hi + Lo) / 2 
    READ (NUnit, REC = Mid) Student 
    Student % Name = TRIM( Student % Name ) 
    IF (Item == Student % Name) THEN 
      Found = .true. 
    ELSE IF (Item < Student % Name) THEN 
      Hi = Mid 
    ELSE 
      Lo = Mid 
    END IF 
    Count = Count + 1 
  END DO 
  IF (Found) Posn = Mid 
END SUBROUTINE 
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You can add this subroutine to the program Student_Records of the last section, and implement 
it from the subroutine UpDate with the following template: 

   
CALL BinSearch( 1, Item, RecNo )              
IF (RecNo > 0) THEN                           
  PRINT*, Item, ' found at record', RecNo     
  ... update record RecNo ... 
ELSE                                          
  PRINT*, Item, ' not found'                  
END IF                                        

   
 
Figure 12.1   A file (STUDENT.REC) and its keyed file (MARKS.REC)  

 

12.4. Keyed Files 
   
This section is a little involved; if you are new to programming, you might like to come back to it 
later. 
An obvious extension to the program Student_Record in Section 12.2 is to sort a particular 
offering into order of merit, and to save the sorted file. If the records in the data file are long (i.e. an 
array of offerings in the Mark component), this can be both time-consuming (because of all the 
swopping involved) and risky (disk errors are more likely to occur during the rewrite of a large file). 
The concept of a keyed file provides a neat solution to both these potential problems.  
For ease of reference, let's call the database file STUDENT.REC. Suppose we want to sort the Mark 
component in the file. We really only need the Mark component (the key field) of each student, plus 
a reference field to point to the student's name in the original file STUDENT.REC once the key field 
has been sorted. We therefore create a key file, MARKS.KEY, the records of which will be structure 
variables of type Key: 

   
TYPE Key 
  INTEGER     RecNum       
  INTEGER     KeyField 
END TYPE Key 

   
The component KeyField has the mark to be sorted, while the component RecNum gives the 
position (record number) of the student with that mark in STUDENT.REC. Now a sort need only be 
performed on the much smaller file MARKS.KEY. Figure ?? shows the contents of both files after 
sorting MARKS.KEY. The RecNum field gives the names of the students in order of merit: 3 (Bill), 
4 (Jim), 2 (Ann) and 1 (Jack). 
The program KeyTest below reads STUDENT.REC and creates the key file MARKS.KEY. It also 
copies the records of the key file into the array KeyArr, which is passed to the subroutine 
Key_Sort. This is an amendment of the Bubble Sort subroutine in Chapter 9 (only amended lines 
are shown). After sorting, KeyArr is written back to MARKS.KEY. The sorted key file is then 
used with the original database, STUDENT.REC to write the names of the students and marks, in 
order of merit.  

   
PROGRAM KeyTest  
IMPLICIT NONE  
 
INTEGER, PARAMETER :: NameLen = 20 
INTEGER, PARAMETER :: MaxStu = 100 
 
TYPE Key 
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  INTEGER     RecNum       
  INTEGER     KeyField 
END TYPE Key 
 
TYPE StudentRecord 
  CHARACTER (NameLen)  Name 
  INTEGER              Mark 
END TYPE StudentRecord 
 
TYPE (Key)           KeyVar 
TYPE (KEY), DIMENSION (MaxStu) :: KeyArr 
TYPE (StudentRecord) Student  
INTEGER              EOF, Num, RecNo, TotRecs 
INTEGER              KeyLen, StuLen 
INTEGER          ::  KeyFile = 1    ! unit for key file 
INTEGER          ::  StuRecFile = 2 ! unit for StudentRecord file 
 
INQUIRE (IOLENGTH = StuLen) Student 
OPEN (StuRecFile, FILE = 'student.rec', STATUS = 'OLD', & 
                  ACCESS = 'DIRECT', RECL = StuLen) 
INQUIRE (IOLENGTH = KeyLen) KeyVar 
OPEN (KeyFile, FILE = 'marks.key', STATUS = 'REPLACE', & 
               ACCESS = 'DIRECT', RECL = KeyLen) 
RecNo = 0                      ! create the key file 
EOF = 0                                                            
DO WHILE (EOF == 0)             
  READ (StuRecFile, REC = RecNo+1, IOSTAT = EOF) Student   
  IF (EOF == 0) THEN                                               
    RecNo = RecNo + 1          ! total number of records 
    KeyVar % RecNum = RecNo 
    KeyVar % KeyField = Student % Mark 
    WRITE (KeyFile, REC = RecNo) KeyVar 
    KeyArr(RecNo) = KeyVar     ! and copy into array 
  END IF                                                           
END DO                                                             
 
TotRecs = RecNo       ! total number of records 
 
CALL Key_Sort( KeyArr, TotRecs ) 
 
DO Num = 1, TotRecs   ! write sorted array back to key file 
  WRITE (KeyFile, REC = Num) KeyArr(Num) 
END DO                                                             
 
PRINT*, 'Order of merit using the key file:' 
PRINT* 
 
DO Num = 1, TotRecs   ! use sorted keyfile to write order of merit 
  READ (KeyFile, REC = Num) KeyVar   ! read key file for RecNum 
  READ (StuRecFile, REC = KeyVar % RecNum) Student  ! read RecNum 
  PRINT '(A20, I3)', Student         ! print merit list 
END DO 
 
CLOSE (1) 
CLOSE (2) 
 
CONTAINS 
  SUBROUTINE Key_Sort( X ) 
    TYPE (KEY), DIMENSION (:), INTENT(INOUT) :: X   !list  
    TYPE (KEY)  Temp                ! temp for swop  
    ... 
 
        IF (X(J) % KeyField < X(J+1) % KeyField) THEN  
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    ... 
  END SUBROUTINE 
END 

   
If a key file is set up with names as the key field, it can be sorted on the names (with slight 
adjustments to Key_Sort). A binary search for a name can then be conducted on the key file, with 
reference to the original database for that student's mark(s), if necessary. 

12.5. Hashing 
   
The program in this section does not use derived types; however, it arises naturally from the earlier 
discussion of searching. 
One problem with a binary search is that the items must be sorted. This means that if additional 
items are added to the list, the entire list must be resorted before a search can be conducted. The 
method discussed in this section does not require the items to be sorted, and is one of the most 
efficient methods of searching: hashing. If you are a programming novice, you might like to skip 
this section and come back to it later.  
Suppose we have an array Names, as in Figure 12.2. Take the first element Ann, and perform some 
operation on the characters in the name to produce a positive integer, e.g. add up the ASCII codes of 
the characters. This process is called hashing, it is done by a hash function, and the resultant integer 
is called the hashed index—let's call it K. Now set up a second array Index, and store in 
Index(K) Ann's position in Names, i.e. 1. Suppose K has the value 43. Then Index(43) will 
have the value 1, as in Figure 12.2. (The name Ann is inserted for clarity.) Now take some other 
item in Names, e.g. Tony, and hash it with the same hash function (whatever it is). Suppose the 
hashed index is 1. Then take Tony's position in Names, which is 4, and store it in Index(1), as in 
the figure. 
 
Figure 12.2    Hashing  

 
Obviously K is going to have to be reduced modulo the length of the array Index, e.g. if Index 
has indices from 1 to 53, say, and K turns out to be 4575, it must be reduced by the operation  

   
K = MOD(K, 53)+ 1 

   
to put it in the range 1–53.  
We continue this process for all the items in Names. You might have thought of an objection by 
now. It is most unlikely that the hash function will produce a unique value of K for each item in the 
list. So when setting up the hashed list in Index, a particular hashed position might be found to be 
occupied already (the elements of Index should be initialized to some negative value, say -100, to 
indicate that they are all unoccupied at first). This is called a collision. There are various ways of 
dealing with collisions. One is to use the next position, but this causes clumping of the hashed list, 
which is inefficient. A more imaginative solution to the problem of collisions is to use double 
hashing.  
At this stage we need a little more notation. Let's rather call the original hash value H. For best 
results, the length of the Index array needs to be a prime number. Let's call it Mn. So K is in fact 
given by  

   
K = MOD( H, Mn) + 1 
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For double hashing, choose another prime Mn2, which is slightly less than Mn. If position K is 
occupied, look in position K + InK where  

   
InK = MOD( H, Mn2) 

   
Continue increasing K like this (modulo Mn) until an unoccupied position is found. 
When we have finished we will have a hashed list in Index. To find a particular item, hash it and 
"probe" at K, K + InK, ..., until either an unoccupied position (not found) or a match is found.  
For the best results, the total number of items in Names should not exceed 0.75Mn.  
The program Hash below demonstrates hashing on a list of names in the sequential file NAMES, 
which is set up separately. The file is read into the array Names, which is hashed into Index by the 
subroutine Place and the function Find. Items supplied by the user are then searched for with 
Find. If the item is found, it is displayed with its position in Names. If it is not found, Find 
returns minus the position it would occupy in Index if it was there.  
Mn and Mn2 are taken as 103 and 89 respectively, and the actual hashing function used, at the 
beginning of Find, computes the sums of the squares of the ASCII codes of the characters in the 
item. Different hashing functions could be used, depending on the nature of the list to be searched. 
Some experimentation might be necessary on a dummy list to find a hashing function which causes 
the least clumping (this reduces the number of probes needed to find an item).  

   
PROGRAM Hash 
IMPLICIT NONE 
 
INTEGER, PARAMETER :: Mn = 103         ! prime for hashing 
INTEGER, PARAMETER :: Mn2 = 89         ! prime for double hashing 
INTEGER, PARAMETER :: NameLen = 20     ! length of names 
INTEGER H                              ! hash value 
INTEGER EOF, I 
INTEGER N  ! length of list:  
           ! should be about 0.75Mn for best results 
INTEGER, DIMENSION (Mn) :: Index       ! hashed list 
CHARACTER (NameLen), DIMENSION(Mn) :: Names = ''  ! list of names 
CHARACTER (NameLen), Item              ! name to search for 
 
OPEN (1, FILE = 'NAMES') 
EOF = 0 
I = 1 
 
DO WHILE (EOF == 0)                    ! read list of names 
  READ (1, '(A20)', IOSTAT = EOF) Item 
  IF (EOF == 0) THEN 
    Names(I) = TRIM( Item )     
    I = I + 1 
  END IF 
END DO 
 
N = I - 1 
Index = -100           ! all positions initially unoccupied 
 
DO I = 1, N            ! construct hash list 
  CALL Place( I, Index, Names ) 
END DO 
 
Item = ''              ! now look for Items 
DO WHILE (Item /= '#') 
  PRINT*, 'Search for?' 
  READ*, Item 
  Item = TRIM( Item ) 
  H = Find( Index, Names, Item ) 
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  IF (H > 0) THEN 
    PRINT*, Names(H), ' found in element', H, ' of Names' 
  ELSE 
    PRINT*, H, ' (not found)' 
  END IF 
END DO 
 
CONTAINS 
  FUNCTION Find( Index, Names, Item ) 
  ! Hashes Item to integer K, which is increased by InK if 
  ! necessary, until either an unused position (Index(K) = -100) 
  ! or a match (Item = Names(Index(K))) is found.  If no match 
  ! is found, Index(K) is returned. 
 
    INTEGER F, Find, H, I, InK, K 
    INTEGER, DIMENSION(:) :: Index 
    CHARACTER (*), DIMENSION(:) :: Names  
    CHARACTER (*) Item 
    H = 0 
    DO I = 1, LEN_TRIM( Item )              ! hash it 
      H = H + IACHAR( Item(I:I) ) * IACHAR( Item(I:I) ) 
    END DO 
 
    K = MOD( H, Mn ) + 1 
    InK = MOD( H, Mn2 ) 
 
    ! now we look until we find an unused position or a match 
    F = -1 
    DO WHILE (F == -1) 
      IF (Index(K) == -100) THEN 
        F = -K 
      ELSE IF (Item == Names( Index(K) )) THEN 
        F = Index(K) 
      END IF 
      K = MOD( K+InK, Mn ) + 1 
    END DO 
    Find = F 
  END FUNCTION Find 
 
  SUBROUTINE Place( J, Index, Names ) 
  ! Place is used to set up the hashed list Index from the list of  
  ! items Names.  The item in Names(J) is hashed to the integer K. 
  ! The item's position J in Names is placed in Index(K).   
  ! A positive value should never be returned to Place by Find,  
  ! a match is not being sought from Place.  A positive value means 
  ! a duplicate item in Names. 
    INTEGER J, K 
    INTEGER, DIMENSION(:) :: Index 
    CHARACTER (*), DIMENSION(:) :: Names    
    K = Find( Index, Names, Names(J) ) 
    IF (K > 0) THEN ! position occupied - we should never get here! 
      PRINT*, Names(J), '  already known at hash position', K 
      PRINT*, 'New simple position', J, ' will be inaccessible' 
    ELSE 
      K = -K 
      Index(K) = J 
    END IF 
  END SUBROUTINE Place 
END 

   
Dealing with additional items is simple. Just add them on at the end of the disk file, and rehash the 
enlarged array Names! 
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Chapter 12 Summary 
   
• The TYPE statement defines a derived data type. 
• A derived type may have components of different types (including arrays and other structures). 
• A variable of a derived type is called a structure. 
• Structure components are referenced with the component selector % 
• Arrays of structures may be declared. 
• A structure may be initialized with a structure constructor, either in an initialization expression, 

or in an assignment. 
• A structure may appear in an I/O list, as long as there is an appropriate format specification for 

each component. 
• Structures of the same type may be assigned to each other. All corresponding components are 

assigned. 
• The assignment operator may be redefined for derived types by overloading it, using an 

INTERFACE ASSIGNMENT block. 
• New operators may be defined for derived types from a sequence of characters enclosed in 

decimal points (such as .IN.), or intrinsic operators may be overloaded, using an INTERFACE 
OPERATOR block. 

• A function may be structure-valued. 
• A derived type appearing in a module may be declared PRIVATE. The type and all its 

components are then only accessible in the module. If the PRIVATE statement appears in the 
definition, the type name is accessible outside the module, although the components are not. 

• An entity not part of a bigger entity is called an object. 
• An array is any object that is not a scalar (single-valued). 
• A variable now means any named object not a constant, and any part of such an object. 

Chapter 12 Exercises 
   

12.1      Extend the Student_Records program in Section 12.2 to compute and display the 
average mark as part of the subroutine DisplayRecords. 
12.2      As a project extend the Student_Records program in Section 12.2 to accept further 
marks (offerings) for each student. 
One way to do this is to set aside the maximum space required when defining the type 
StudentRecord by declaring the component Mark as an array. The user will then need to 
indicate which offering is being entered. This is wasteful of disk and memory space if fewer 
offerings are actually required. You may like to think of alternative solutions. 
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Chapter 13 Pointer Variables 
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13.1. Introduction 
   
    

Warning      If you are an old confirmed Fortran 77 user, this chapter could damage your health!  
   
The implementation of pointer variables, or simply pointers, brings Fortran at last into the league of 
languages like Pascal and C.  
Run the following program segment: 

   
REAL, TARGET :: R = 13 
REAL, POINTER :: P 
P => R 
R = 2 * P 
PRINT*, P, R  
 

   
You will see that P and R both have the same value: 26. P should be thought of as an alias of its 
target R, i.e. just another name for R. What happens to R therefore also happens to P. In this case P 
is the pointer. It must be specified with the POINTER attribute, and the type of the variable for 
which it is going to be an alias. Furthermore, the variable for which P is to be an alias must be 
declared with the TARGET attribute.The TARGET attribute is conferred on all the sub-objects of an 
object which is thus specified. 
The pointer assignment statement above 

   
P => R 
 

   
should be thought of as "make P an alias of R", or "make P point to R". (If you have encountered 
pointers in other languages, note that a Fortran 90 pointer is not an address—it is in fact the 
reference variable of C++.) The pointer assignment above can be illustrated as follows: 

 

 
Now consider the following code: 

   
REAL, TARGET :: R = 13 
REAL, POINTER :: P1, P2 
P1 => R 
P2 => P1 
PRINT*, P1, P2, R 
END 
 

   
Try to work out the result before running it. The second pointer assignment, 

   
P2 => P1 
 

   
makes P2 an alias of P1. But P1 is already an alias of R, so P2 is also an alias of R: 

 

 

 

 

Pointer assignment versus ordinary assignment 
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Consider the following code: 
   
REAL, TARGET :: R1 = 13 
REAL, TARGET :: R2 = 17 
REAL, POINTER :: P1, P2 
P1 => R1 
P2 => R2 
 

   
It produces this situation: 

 
However, if the ordinary (as opposed to pointer) assignment statement  

   
P1 = P2 
 

   
is executed next, the situation is as follows: 

 
Note that this assignment has exactly the same effect as 

   
R1 = R2 
 

   
since P1 is an alias of R1 and P2 is an alias of R2. 
To sum up: 
• Pointer assignments, such as P => Q, set up the pointer P as an alias of its target Q. 
• A reference to a pointer variable (e.g. in an assignment or expression) is in fact a reference to its 

target variable. 
 Pointer assignment changes a current alias. The statement 

   
P2 => P1 
 

   
   
following the code above changes the target of P2 to that of P1, so that P1 and P2 are now both 
aliases of R1: 

 
Pointer states 

   
Any pointer in a program is always in one of the following three states: 
• It may be undefined —all pointers are in this state at the beginning of a program. 
• It may be null (see the NULLIFY statement below)—this means that it is not the alias of any 

object. 
• It may be associated (see the ASSOCIATED intrinsic function below)—this means that it is the 

alias of some object. 

 
The NULLIFY statement 
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As just mentioned, a pointer is undefined at the beginning of a program. However, it is sometimes 
convenient for a pointer to be "pointing to nothing", or "not pointing to anything". This is the null 
state, and is achieved by the statement 

   
NULLIFY( P1 ) 
 

   
where P1 is a pointer. The null state may be tested for with the ASSOCIATED intrinsic function; 
this is useful when manipulating linked lists (see below). It may also be assigned to another pointer 
with a pointer assignment (=>). On the other hand, if two pointers have the same target, nullifying 
one does not nullify the other. 

The ASSOCIATED intrinsic function 
   
If this function has one pointer argument, as in 

   
ASSOCIATED( P1 ) 
 

   
it returns TRUE if P1 is an alias of an object, and FALSE if it is not (i.e. null). Note that P1 must be 
defined to use this function correctly.  
ASSOCIATED may have a second argument. If the second argument is a target, it returns TRUE if 
the first argument is an alias of the second argument. If the second argument is also a pointer, it must 
be defined. TRUE is returned if both pointers are null, or if they are both aliases of the same object.  

Arguments with the TARGET attribute 
   
Pointers associated with an actual argument that has the TARGET attribute do not become associated 
with the corresponding dummy argument, but remain associated with the actual argument. If a 
dummy argument has the TARGET attribute, any pointer associated with it becomes undefined on 
return. 

Dynamic variables: ALLOCATE and DEALLOCATE 
   
We came across dynamic memory in Chapter 9, where we saw that storage can be allocated to an 
array at run time. More generally, a dynamic variable (not necessarily an array) may be created as 
follows: 

   
REAL, POINTER :: P1 
ALLOCATE( P1 ) 
 

   
This makes the pointer P1 an alias of an area of memory able to store a real variable. Note that no 
value is assigned at this stage. However, since P1 is an alias, it may now be used as any other real 
variable can be, e.g. 

   
P1 = 17 
PRINT*, P1 
 

   
The memory pointed to by P1 can be released by the statement 

   
DEALLOCATE( P1 ) 
 

   
This returns P1 to the undefined state it had at the beginning of the program. 
Both ALLOCATE and DEALLOCATE have an optional specifier STAT, e.g. 

   
ALLOCATE( P1, STAT = AlloStat ) 
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The integer variable AlloStat will zero only if memory was successfully allocated or deallocated. 
When an array is specified with the ALLOCATABLE or POINTER attribute its bounds must be 
undefined: 

   
REAL, DIMENSION(:), POINTER :: X 
INTEGER, DIMENSION(:,:), ALLOCATABLE :: A 

Danger! 
   
The ability to create dynamic memory brings greater versatility and freedom to programming, but 
also requires greater responsibility. In particular there are two potential sources of disaster which 
need to be studiously avoided. 
The first is the dangling pointer. Consider the following: 

   
REAL, POINTER :: P1, P2 
ALLOCATE( P1 ) 
P1 = 13 
P2 => P1 
 

   
P1 and P2 both reference the same dynamic variable. If now the statement 

   
DEALLOCATE( P1 ) 
 

   
is executed, it is clear that P1 is disassociated, and the dynamic variable to which it was pointing 
destroyed. What is not so clear, however, is that P2 is also affected, since the object it was aliasing 
has disappeared. A reference to P2 will probably not cause a program crash, but it will produce 
unpredictable results. 
The second problem is that of unreferenced storage. Consider the following: 

   
REAL, DIMENSION(:), POINTER :: X 
ALLOCATE( X(2000) ) 
 

   
If X is nullified or set to point somewhere else, without first deallocating it, there is no way to refer 
to that block of memory, and so it cannot be released. The solution is to deallocate a dynamic object 
before modifying a pointer to it. 

Array-valued functions 
   
Sometimes one may want to set up a function to return an array of varying size, but a function may 
not be declared with the ALLOCATABLE attribute. However, a function may be declared with the 
POINTER attribute, and this can achieve the same effect. The function Vector below returns its 
array argument with elements sorted in ascending order.  

   
IMPLICIT NONE 
INTEGER, DIMENSION(10) :: X = (/ 3, 6, 9, -1, 56, 4, 6, 0, 0, 8 /) 
 
PRINT '(20I3)', Vector( X ) 
 
CONTAINS 
 FUNCTION Vector( A ) 
  INTEGER, DIMENSION(:), POINTER :: Vector  
  INTEGER, DIMENSION(:) :: A 
  INTEGER I, J, T 
  ALLOCATE( Vector(SIZE(A)) )  ! allowed because Vector points 
  Vector = A 
  DO I = 1, SIZE(A)-1 
   DO J = I+1, SIZE(A) 
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    IF (Vector(I) > Vector(J)) THEN 
     T = Vector(J) 
     Vector(J) = Vector(I) 
     Vector(I) = T 
    END IF 
   END DO 
  END DO 
 END FUNCTION Vector 
END 
 

   
A problem with this example is that there seems to be no way (under FTN90 version 1.12) of 
deallocating Vector.  

Arrays of pointers 
   
If you have been brought up on an exclusive diet of Fortran, it may never have occurred to you to 
want to think about an array of pointers. But this could be useful if you wanted, for example, to set 
up an array of dynamic variables. Now there is no direct way of declaring an array of pointers in 
Fortran 90. The obvious declaration (which is not allowed) would be 

   
REAL, DIMENSION(100), POINTER :: X ! illegal 
 

   
This, however, would mean that X is a pointer to an array pointer to array of 100 real elements, not 
an array of 100 pointers. As we have seen, the correct syntax for the above declaration is 

   
REAL, DIMENSION(:), POINTER :: X 
 

   
This is more flexible, and allows you to allocate the array size at runtime: 

   
ALLOCATE( X(N) ) 
 

   
The solution to our problem is to create a type with a pointer component, and then to declare arrays 
of that type.  

Representation of a triangular matrix 
   
For example, each row of a lower-triangular matrix may be represented by a dynamic array of 
increasing size. Run the following example, which is adapted from Metcalf and Reid: 

   
TYPE ROW 
 REAL, DIMENSION(:), POINTER :: R 
END TYPE 
 
INTEGER, PARAMETER :: N = 4 
TYPE (ROW), DIMENSION(N) :: S, T  ! arrays of type ROW,  
                  ! i.e. matrices 
 
DO I = 1, N 
 ALLOCATE (T(I) % R(1:I))     ! allocate storage for each  
                  ! row of T 
END DO 
 
DO I = 1, N 
 T(I) % R(1:I) = 1        ! assign values to matrix T 
END DO 
 
S = T               ! array assignment 
 
DO I = 1, N 
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 S(I) % R(:I) = 2         ! assign values to matrix S 
END DO 
 
DO I = 1, N 
 PRINT*, T(I) % R(:I)       ! print matrix T 
END DO 
 

   
You may be surprised to find that T has taken the value of S. This is because the assignment 

   
S = T 
 

   
involves structures whose components are pointers. The rule is that pointer assignment occurs for 
the pointer components. The above assignment is therefore equivalent to the pointer assignments 

   
S(I) % R => T(I) % R 
 

   
for all the components. Since all the components of S and T are pointers, this effectively makes S an 
alias of T, which is why T takes the same value as S in the above example. 
Note that this representation uses only half the storage of conventional two-dimensional arrays.  

Sorting structures 
   
We saw in Chapter 12 how to use a key file to sort structure variables on a particular component, in 
order to reduce the amount of swopping involved. An alternative approach is to use an "array" of 
pointers, set up as an array of structures with a pointer component, as described above. 
The following program, which is discussed below, reads four records from a direct access file. Each 
record holds a structure variable with two components: a student's name and a mark. We want to sort 
the students into an order of merit. 

   
IMPLICIT NONE 
 
INTEGER, PARAMETER :: NameLen = 20 
INTEGER, PARAMETER :: MaxStu = 100 
 
TYPE KeyPointer 
 TYPE (StudentRecord), POINTER :: Key 
END TYPE KeyPointer 
 
TYPE StudentRecord 
 CHARACTER (NameLen) Name 
 INTEGER       Mark 
END TYPE StudentRecord 
 
TYPE (KeyPointer), DIMENSION(:), ALLOCATABLE :: Pointers 
 
TYPE (StudentRecord), DIMENSION(MaxStu), TARGET :: Student  
INTEGER       I, TotRecs 
INTEGER       StuLen 
INTEGER     :: StuRecFile = 2 ! unit for StudentRecord file 
 
INQUIRE (IOLENGTH = StuLen) Student(1) 
OPEN (StuRecFile, FILE = 'student.rec', STATUS = 'OLD', & 
         ACCESS = 'DIRECT', RECL = StuLen) 
TotRecs = 4 
ALLOCATE( Pointers(TotRecs) ) 
DO I = 1, TotRecs 
 READ (StuRecFile, REC = I) Student(I) 
 Pointers(I) % Key => Student(I)  ! aliases to each Student(I) 
END DO                               
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CALL BUBBLE_SORT( Pointers ) 
 
PRINT*, 'Order of merit using pointers:' 
PRINT* 
 
DO I = 1, TotRecs       
 PRINT '(A20, I3)', Pointers(I) % Key   ! print merit list 
END DO 
 
CLOSE (2) 
 
CONTAINS 
 SUBROUTINE BUBBLE_SORT( X ) 
  TYPE (KeyPointer), DIMENSION (:), INTENT(INOUT) :: X  !list  
  TYPE (KeyPointer) Temp     ! temp for swop 
  ... 
   DO J = 1, SIZE(X) - K    ! fewer tests on each pass  
    IF (X(J) % Key % Mark < X(J+1) % Key % Mark) THEN  
    ... 
 END SUBROUTINE 
END 
 

   
Pointers is an array of type KeyPointer, which has a single component, pointing to 
StudentRecord. It has the ALLOCATABLE attribute so that a dynamic array may be created. We 
could have declared Pointers with the POINTER attribute; however, we do not need this attribute 
for the array—only for the component. 
Since we want to set up Pointers as aliases of the array Student, Student must have the 
TARGET attribute. 
The ALLOCATE statement sets up a dynamic array Pointers with four elements (in this case). 
The Ith record from the file is read into Student(I), which is aliased by Pointers(I) % 
Key. The array Pointers is passed to the subroutine BUBBLE_SORT. Only the lines which differ 
from the version in Chapter 9 are given here. Note that the number of elements in Pointers does 
not have to be passed; this is obtained directly with SIZE. 
The sorting is done on Pointers(I) % Key % Mark instead of Student(I) % Mark. 
This means that at the end of the sort, Pointers(I) % Key will point to the student record with 
the highest mark, because of the alias relationship. Note also that the ordinary assignments involving 
Temp and X actually involve pointer assignments of their Key components, again because of the 
alias set up. 
If you are confused by this (and who wouldn't be?) convince yourself that a list of two records will 
be correctly ordered by drawing some diagrams of the aliases. 
Note that this approach uses more memory than a key file, since the student records must be in the 
array Student to maintain the aliases. 

 
 
13.2. Linked Lists 

   
One of the classical and most powerful applications of pointers is in setting up and manipulating 
linked lists. It is also one of the most difficult to understand—I usually have to resort to drawing a 
lot of diagrams before I can follow what is going on. A thorough study of linked lists and related 
topics such as binary trees is beyond the scope of this book, and not in keeping with its ethos, so 
only relatively simple examples will be given here.  
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The basic idea is to represent a list of values with a chain of dynamic variables, all linked together 
(as an alternative, say, to an array). Each of these variables should hold a value, and also point to the 
next variable in the chain. Such a variable is called a node. It could have two components: a value, 
and a pointer to another node. Fortran 90 allows the following rather curious type definition: 

   
TYPE NODE 
 INTEGER Value 
 TYPE (NODE), POINTER :: Next 
END TYPE NODE 
 

   
A variable of this type is usually represented as follows, the top box being for the value, and the 
bottom one for the pointer to the next node: 

 
We will declare two variables of this type: 

   
TYPE (NODE), POINTER :: Current, L 
 

   
Current is the name of a general node, while L marks the end of the list. The two most important 
things about a linked list are where it starts and where it ends. We could have a separate pointer to 
mark the beginning of the list, but this can also be done with a null pointer (since this can be tested 
for). Initially, the list will be empty, so L should point to both the beginning and the end. This is 
effected by initially nullifying L: 

   
NULLIFY( L ) 
 

   
The null pointer is usually represented by the symbol for earthing an electrical conductor: 

 
Let's now set up a list with one node, containing the integer value Num. Firstly, dynamic storage 
must be allocated for Current:  

   
ALLOCATE( Current ) 
 

   
Next, give it a value (that's easy): 

   
Current % Value = Num 
 

   
Finally, and this is the only really tricky part, we must arrange for L to point to the end of the list. 
Where is that? Well, the last (and only node) added is Current, so L must point to (be an alias of) 
Current: 

   
L => Current 
 

   
If the value of Num is 1, the situation now looks like this: 

 
This process can be repeated as long as you like. The following piece of code will set up a linked list 
by reading numbers from the keyboard until a zero is entered: 
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DO WHILE (Num /= 0)                            
 READ*, Num                               
 IF (Num /= 0) THEN                           
  ALLOCATE( Current )       ! new node 
  Current % Value = Num                       
  Current % Next => L       ! point it to previous node 
  L => Current          ! update end of list         
 END IF                                 
END DO                                  
 

   
If, for example, the values 1, 2, 3 are entered in that order, the list looks as shown in Figure 13.1. 
Having set up the list, the next thing is to traverse it and print all the values. This is psychologically 
satisfying, because it's sometimes hard to believe the list is really there in memory, since none of the 
nodes have names. This is where it is important to know where the end of the list is—L points to it. 
So we start by making our general node Current an alias of L: 

   
Current => L 
 

   
Then we print the value in that node, and make Current an alias of the next node, which is pointed 
to by Current % Next: 

   
PRINT*, Current % Value 
Current => Current % Next 
 

   
How do we detect the beginning of the list? Remember that the pointer in the first node (at the 
beginning of the list) is null—this can be tested for, so the above two statements can be enclosed in a 
DO WHILE loop: 

   
 DO WHILE (ASSOCIATED(Current))    
 PRINT *, Current % Value      
 Current => Current % Next ! now make Current alias of next node   
END DO                
 

   
Current is only null after the last execution of the loop, when it is made an alias of the pointer in 
the first node. This process demonstrates how important it is to have the pointer L pointing to the 
end of the list—otherwise you could never find it. 
One of the advantages of using a linked list is that it can be disposed of when no longer needed, 
releasing valuable memory. This may be done as we traverse the list from the end, although now a 
little more "housekeeping" is required. 

 
Once again, make Current an alias of the end of the list: 

   
Current => L 
 

   
You might be tempted to deallocate Current straight away. However, if you look at Figure 13.1 
you will see that this is a prescription for disaster. With the last node removed, the link to the second 
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last one is broken, and it consequently can never be found. So before deallocating Current, the 
end marker L should be made to point to the second last node: 

   
L => Current % Next 
 

   
Now Current may be safely deallocated, and the general node Current made an alias for the 
new end of the list: 

   
Current => L 
 

   
This process must be carried out as long as the end marker L is not null: 

   
PRINT*, 'Deleting ...' 
Current => L        ! make Current alias of last node again 
DO WHILE (ASSOCIATED(L))             
 L => Current % Next ! disconnect L from last node, and make it ..  
           ! ... point to next one instead 
 PRINT*, Current % Value, ' is about to go' ! just to make sure 
 DEALLOCATE( Current )              
 Current => L       ! alias of last remaining node 
END DO                      
 

   
If you don't understand this, perhaps you should also resort to drawing some diagrams. 
Before you go any further, you should put these pieces together in a working program to create a 
linked list, print it, and dispose of it. 

13.3. Hidden Implementations of Abstract Data Types 
   
One of the advantages of modules is that the details of the implementation of an abstract data type 
may be hidden from the user of a module. All the user is supplied with is the name of the data type 
and subprograms for manipulating it. This way, the details of the implementation in the module may 
be changed without affecting any code that uses the module. 
To illustrate this most important principle, two modules are given in this section. One implements a 
list of integers as a linked list; the other implements the list as a dynamic array. The only change 
required in the driving main program is the name of the module used. 
The linked list implementation is in the module ModLink. It is very similar to the example in 
Section 13.2, but has some important differences, which are discussed below: 

   
MODULE ModLink 
 ! Implementation of abstract data type as a linked list 
 IMPLICIT NONE 
 
 PRIVATE NODE 
 
 TYPE NODE            
  INTEGER Value         
  TYPE (NODE), POINTER :: Next 
 END TYPE NODE          
                 
 TYPE LIST            
  PRIVATE 
  TYPE (NODE), POINTER :: End  
 END TYPE LIST          
 
CONTAINS 
 
SUBROUTINE Dispose( L ) 
 TYPE (NODE), POINTER :: Current 
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 TYPE (LIST) L 
  Current => L % End      ! start at the end 
  DO WHILE (ASSOCIATED(L % End)) 
   L % End => Current % Next  ! update the end before disposing 
   PRINT*, Current % Value, ' is about to go' 
   DEALLOCATE( Current ) 
   Current => L % End     ! alias of last node again 
  END DO 
END SUBROUTINE Dispose 
 
SUBROUTINE Insert( L, Num )                        
 TYPE (NODE), POINTER :: Current                    
 TYPE (LIST) L 
 INTEGER Num 
 ALLOCATE( Current )       ! new node  
 Current % Value = Num                       
 Current % Next => L % End    ! point it to previous node       
 L % End => Current       ! update the end of the list         
END SUBROUTINE Insert                           
 
SUBROUTINE PrintList( L ) 
 TYPE (NODE), POINTER :: Current                    
 TYPE (LIST) L 
 ! Start at the end now       
 PRINT*, 'From the end:'      
 Current => L % End       ! alias of last node 
                   
 DO WHILE (ASSOCIATED(Current))   
  PRINT *, Current % Value     
  Current => Current % Next   ! alias of next node 
 END DO               
END SUBROUTINE PrintList 
 
SUBROUTINE SetUp( L ) 
 TYPE (LIST) L 
 NULLIFY( L % End )       ! list is empty at first 
END SUBROUTINE SetUp 
 
END MODULE ModLink 
 

   
The most important difference is that our pointer L of Section 13.2, which marked the end of the 
linked list, is now specified with a derived type LIST. This is to enable a user of the module to 
declare a variable of this type to name his list, without needing to know precisely how the type is 
defined. All occurrences of L in the coding in Section 13.2 must therefore be replaced by L % End. 
The PRIVATE specifications mean that the type NODE is inaccessible outside the module, and that 
the user will not have access to the internal structure of type LIST. 
W.S. Brainerd, C.H. Goldberg and J.C. Adams,Brainerd, Goldberg and Adams Programmers' Guide 
to Fortran 90 (McGraw-Hill, 1990) suggest that the subroutine SetUp be written as a function, to 
return a null pointer to head the list, 

   
FUNCTION SetUp() 
 TYPE (LIST) SetUp 
 NULLIFY (SetUp % End) 
END FUNCTION SetUp 
 

   
which is invoked in the accessing program as follows: 

   
L = SetUp() 
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where L is of type LIST. This, however, is not allowed under the FTN90 compiler (it will not return 
a null pointer). 
To use this implementation of a list, all that is needed is a main program like the following: 

   
PROGRAM TestList 
USE ModLink       ! linked list implementation 
IMPLICIT NONE 
TYPE (LIST) L 
INTEGER :: Num = 1 
 
CALL SetUp( L ) 
 
DO WHILE (Num /= 0)                            
 READ*, Num                               
 IF (Num /= 0) THEN                           
  CALL Insert( L, Num )  
 END IF                                 
END DO                                  
 
CALL PrintList( L ) 
CALL Dispose( L )          ! always tidy up afterwards! 
 
END PROGRAM TestList 
 

   
By contrast, the module ModArray implements the list as a dynamic array: 

   
MODULE ModArray 
 ! Implementation of abstract data type LIST as a dynamic array 
 IMPLICIT NONE                          
                                  
 TYPE LIST                            
  PRIVATE 
  INTEGER, DIMENSION(:), POINTER :: Elements ! dynamic storage 
 END TYPE LIST                          
 
CONTAINS 
 
SUBROUTINE Dispose( L ) 
 TYPE (LIST) :: L 
 DEALLOCATE( L % Elements ) 
END SUBROUTINE Dispose 
 
SUBROUTINE Insert( L, Num )                        
 TYPE (LIST) :: L                    
 INTEGER, DIMENSION( SIZE( L % Elements ) ) :: OldL 
 INTEGER N, Num 
 OldL = L % Elements 
 DEALLOCATE ( L % Elements ) 
 N = SIZE(OldL) 
 N = N + 1 
 ALLOCATE( L % Elements(N) )   
 L % Elements = OldL 
 L % Elements(N) = Num                        
END SUBROUTINE Insert                                           
 
SUBROUTINE PrintList( L ) 
  TYPE (LIST), TARGET :: L             ! note TARGET attribute 
  INTEGER, DIMENSION(:), POINTER :: P 
  INTEGER I 
  P => L % Elements                    ! convenient alias 
  PRINT*, 'From the end:'           
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  PRINT*, (P(I), I = SIZE(P), 1, -1 ) 
END SUBROUTINE PrintList 
 
SUBROUTINE SetUp( L ) 
  TYPE (LIST) :: L 
  ALLOCATE( L % Elements(0) )          ! size zero at first 
END SUBROUTINE SetUp 
 
END MODULE ModArray 
 

   
The type LIST now has a component which is a pointer to a dynamic array (also inaccessible to the 
user). 
Insert uses the technique of Chapter 9 to increase the size of a dynamic array by one element 
each time a new value is added.  
PrintList uses an alias P to refer to the dynamic array purely for convenience. Note that the 
TARGET attribute of the derived type L is conferred on its component. 
To use this implementation, all you have to do is to change the second line of the main program 
TestList to 

   
USE ModArray          ! dynamic array implementation 
 

   
We have seen in this section that modules with derived types can hide implementation details from 
the user. Type definitions and coding in the module procedures may be changed without affecting 
any code which uses the modules.  

Chapter 13 Summary 
   
• A pointer variable has the POINTER attribute, and may point to (be an alias of) a variable of the 

same type, which has the TARGET attribute. 
• An alias is simply another name for an object. 
• Pointer assignment (=>) sets up or changes an alias. 
• Ordinary assignment of pointer variables operates on their aliases. 
• A pointer may be in one of three states: undefined, null, or associated. 
• The NULLIFY statement puts a pointer into the null state. This may be tested for with the 

ASSOCIATED intrinsic function. 
• The ASSOCIATED intrinsic function ascertains whether a pointer is an alias of some object or 

whether it is null. It can also determine whether a pointer is an alias of a particular target. 
• An ordinary variable is allocated static storage at compile time. 
• A dynamic variable is allocated dynamic storage at run time. 
• A dynamic variable is created with the ALLOCATE statement and referenced with a pointer. 
• Dynamic memory is released with DEALLOCATE. 
• A dynamic array can have either the ALLOCATABLE or POINTER attribute. Its rank must be 

specified, but its bounds must be left undefined until an ALLOCATE statement has been 
executed for it. 

• Arrays of pointers may not be declared directly in Fortran 90. However, a derived type may be 
defined with a pointer component, and an array of such a type can be declared. 

• Implementation details of abstract data types may be hidden in modules. 

Chapter 13 Exercises 
   

13.1      Write some lines of code which set up two pointers P1 and P2 as aliases of the integers I 
and J respectively.  
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Now write some additional code which effectively makes P1 an alias of J and P2 an alias of I, 
without referring to I and J explicitly.  
13.2      Set up an array of structure variables with a single pointer component, and arrange for it to 
point to an array of integer values, suitably initialized.  
Referring only to the "array" of pointers, use a Bubble Sort to sort the integer values into ascending 
order, and print the sorted list. 
13.3      Set up an upper-triangular matrix of N rows and columns, with each row represented by a 
dynamic array of pointers. 
13.4      Write a program to set up a linked list of integer values, read from the keyboard, print the 
list, and dispose of it. 
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Chapter 14 Introduction 
   

An extremely powerful application of modern computers is in simulation. A simulation is a 
computer experiment which mirrors some aspect of the real world that appears to be based 
on random processes, or is too complicated to understand properly. (Whether events can 
be really random is actually a philosophical or theological question.) Some examples are: 
radio-active decay, bacteria division and traffic flow. The essence of a simulation program 
is that the programmer is unable to predict before-hand exactly what the outcome of the 
program will be, which is true to the event being simulated. For example, when you spin a 
coin, you do not know exactly what the result will be.  
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14.1. Random Number Generation 
   
The intrinsic subroutine RANDOM_NUMBER( R ) may be used to simulate random events. It 
generates a uniformly distributed pseudo-random number in the range 

M W L a aL x L a L x a
M Wa aL L x L a L a x L

= − − + ≤ ≤

= − + − ≤ ≤

( ) [ ( )] /
[ ( )] / ( ).

2 3
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2 0
2 3 2

 ( ),
 . (A computer cannot generate truly random 

numbers, but they can be practically unpredictable.) R may be a scalar or an array, but it must be 
real. E.g. 

   
REAL, DIMENSION(10) :: R 
CALL RANDOM_NUMBER( R ) 
PRINT '(E14.7)', R 
 

   
Output: 

   
0.1077691E-01 
0.1275343E00  
0.4685287E00  
0.5612317E00  
0.6204859E00  
0.5067996E00  
0.7804365E00  
0.7967151E00  
0.3911508E00  
0.7211771E-01 
 

   
Of course if you re-use this piece of code again, you will get exactly the same sequence of "random" 
numbers, which is rather disappointing (and not true to life, as every gambler knows). To produce a 
different sequence each time, the generator can be seeded in a number of ways. Here's one way:  

   
INTEGER Count 
REAL, DIMENSION(10) :: R 
INTEGER, DIMENSION(1)  :: Seed 
 
CALL SYSTEM_CLOCK( Count ) 
Seed = Count 
 
CALL RANDOM_SEED( PUT = Seed ) 
CALL RANDOM_NUMBER( R ) 
PRINT '(E14.7)', R 
 

   
The intrinsic subroutine SYSTEM_CLOCK returns in its first (integer) argument the current value of 
the system clock. A second optional argument returns the number of clock counts per second. 
RANDOM_SEED has an optional dummy argument PUT. This is a rank-one integer array which is 
used to reset the seed (Seed) for random number generation. It may be supplied directly by the user 
with a READ statement, or it may be generated itself from the system clock, as in this example. As 
long as the system clock keeps on ticking, you will get different results every time you run this code. 

14.2. Spinning Coins 
   
When a fair (unbiased) coin is spun, the probability of getting heads or tails in 0.5 (50%). Since a 
value returned by RANDOM_NUMBER is equally likely to anywhere in the interval [0, 1) we can 
represent heads, say, with a value less than 0.5; otherwise it will be tails. 
Suppose an experiment calls for a coin to be spun 50 times, and the results recorded. In real life you 
are likely to want to repeat such an experiment a number of times; this is where computer simulation 
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is handy. The following program simulates spinning a coin 50 times, and repeats the simulation five 
times: 

   
INTEGER Count, I 
REAL, DIMENSION(50) :: R 
CHARACTER(1), DIMENSION(50) :: COINS 
INTEGER, DIMENSION(1)  :: Seed 
 
CALL SYSTEM_CLOCK( Count ) 
Seed = Count 
 
DO I = 1, 5 
  CALL RANDOM_SEED( PUT = Seed ) 
  PRINT*, Seed 
  CALL RANDOM_NUMBER( R ) 
  WHERE (R < 0.5) 
    COINS = 'H' 
  ELSEWHERE 
    COINS = 'T' 
  END WHERE 
  PRINT '(50A1)', COINS 
  CALL RANDOM_SEED( GET  = Seed ) 
END DO 
 
END 
 

   
Output:  

   
 HHTTTHTTHHHHTTHHHTTTTTTHTTHTHTTHTTTHHTHTTHHHTTTHHT 
 HTHTTTHTTHHTHTTTTHTHHTHHHTTTTHTTTTTTTTTHTTHTTTTHHT 
 TTTHTTHHHTTHTTTHHHTTHHHTTTTHTHHHTTHTHTTHHTTHHHHHTT 
 HTHTHHTHHHHHTTHTHTTTHHHHHTTHHTTTHTTTTHHHHTHHTTTTHH 
 HTHHTHHHTHTHHTHHTHTTHHHTHTTHTTTTHHHTHHTHTTTTTTTHTH 
 

   
The initial seed is once again generated by the system clock, and RANDOM_SEED is used to seed 
each simulation. At the end of each simulation, another optional argument GET is used to set Seed 
to the current value of the seed (each time a random number is generated the seed is reset internally). 
This means that an unbroken sequence of random seeds is used for the entire set of simulations 
(theoretically, this is preferable to reseeding the process with the system clock for each simulation).  
Note the use of the WHERE construct to generate the array of results COINS from the array of 
random numbers R. 
Note also that it should be impossible in principle to tell from the output alone whether the 
experiment was simulated or real (if the random number generator is sufficiently random).  

14.3. Rolling Dice 
   
When a fair die (plural "dice") is rolled, the number uppermost is equally likely to be any integer 
from 1 to 6. The following program segment simulates 20 rolls of a die. The output from two 
successive runs is shown. 

   
INTEGER Count 
REAL, DIMENSION(20) :: R 
INTEGER, DIMENSION(20) :: Num 
INTEGER, DIMENSION(1)  :: Seed 
 
CALL SYSTEM_CLOCK( Count ) 
Seed = Count 
CALL RANDOM_SEED( PUT  = Seed ) 
CALL RANDOM_NUMBER( R ) 
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Num = INT( 6 * R + 1 )         ! applies to every element 
PRINT '(20I3)', Num 
 

   
Output: 

   
  2  1  4  2  5  4  3  4  3  4  3  4  6  4  4  6  2  3  6  2 
  3  6  4  5  3  4  2  1  3  4  4  1  5  5  2  2  6  5  3  4 
 

   
If R is a real value in the range [0, 1), 6 * R will be in the range [0, 6), and 6 * R + 1 will be in 
the range [1, 7), i.e. between 1.000000 and 6.999999. Discarding the decimal part of this with INT 
will give an integer in the required range.  
Note that the array R can be transformed into the array Num in a single statement. 
Once again, initializing the seed ensures that the two runs are different.  
We can do statistics on our simulated experiment, just as if it were a real one. For example, we could 
estimate the mean of the number on the uppermost face when the die is rolled 100 times, say, and 
also the probability of getting a 6 (note that R is a scalar now, not an array):  

   
INTEGER, PARAMETER :: Throws = 100 
INTEGER Count, I, Num 
REAL :: Num6, Mean, R 
INTEGER, DIMENSION(1)  :: Seed 
 
CALL SYSTEM_CLOCK( Count ) 
Seed = Count 
CALL RANDOM_SEED( PUT  = Seed ) 
Mean = 0 
 
DO I = 1, 20 
  CALL RANDOM_NUMBER( R ) 
  Num = INT( 6 * R + 1 ) 
  Mean = Mean + Num 
  IF (Num == 6) Num6 = Num6 + 1 
END DO 
 
  PRINT '("Mean:            ", F6.2)', Mean / Throws 
  PRINT '("Chances of a 6:  ", F6.2)', Num6 / Throws 
END 
 

   
Output from two successive runs: 

   
Mean:              3.32 
Chances of a 6:    0.17 
 
Mean:              3.62 
Chances of a 6:    0.18 
 

   
Run the program a number of times, increasing the value of Throws each time, and observe what 
happens to the mean and the chances of getting a 6. 

14.4. Bacteria Division 
   
If a fair coin is spun, or a fair die is rolled, the different events (e.g. getting "heads", or a 6) happen 
with equal likelihood. Suppose, however, that a certain type of bacteria divides (into two) in a given 
time interval with a probability of 0.75 (75%), and that if it does not divide, it dies. Since a value 
generated by RANDOM_NUMBER is equally likely to be anywhere between 0 and 1, the chances of it 
being less than 0.75 are 75%. We can therefore simulate this situation as follows:  
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CALL RANDOM_NUMBER( R ) 
IF (R < 0.75) THEN 
  PRINT*, Count, R, "I am now we" 
ELSE 
  PRINT*, Count, R, "I am no more" 
END IF 
 

   
The basic principle of simulation is that one random number should be generated for each event 
being simulated. The single event here is whether or not the bacterium divides.  

14.5. A Random Walk 
   
A drunken sailor has to negotiate a jetty toward his ship. The jetty is 50 paces long and 20 wide. A 
mate places him in the middle of the jetty at the quay-end, and points him toward the ship. Suppose 
at every step he has a 60% chance of lurching toward the ship, but a 20% chance of lurching to the 
left or right (he manages always to be facing the ship). If he reaches the ship-end of the jetty, he is 
hauled aboard by waiting mates. The problem is to simulate his progress along the jetty, and to 
estimate his chances of getting to the ship without falling into the sea. To do this correctly, we must 
simulate one random walk along the jetty, find out whether or not he reaches the ship, and then 
repeat this simulation 100 times, say. The proportion of simulations that end with the sailor safely in 
the ship will be an estimate of his chances of making it to the ship. For a given walk we assume that 
if he has not either reached the ship or fallen into the sea after, say, 10000 steps, he dies of thirst on 
the jetty.  
To represent the jetty, we set up co-ordinates so that the x-axis runs along the middle of the jetty 
with the origin at the quay-end. x and y are measured in steps. The sailor starts his walk at the origin 
each time. The structure plan, program and output from two successive runs are as follows: 
  1.  Initialize variables 
    2.     Repeat 100 simulated walks down the jetty 
                  Start at the quay-end of the jetty 
                  While  still on the jetty and still alive repeat: 
                         Get a random number R for the next step 
                         If  R < 0.6 then 
                              Move forward (to the ship) 
                         Otherwise if R < 0.8 then 
                               Move port (left) 
                          Otherwise 
                                Move starboard 
                  If he got to the ship then 
                         Count that walk as a success 
    3.    Compute and print estimated probability of reaching the ship 

   
PROGRAM DrunkenSailor 
IMPLICIT NONE 
INTEGER  ::  Count            ! system clock (to seed  
                              ! random number) 
INTEGER :: NSafe = 0          ! number of times he makes it 
INTEGER, DIMENSION(1) :: Seed ! seed for  random number generator 
INTEGER :: Sims = 1000        ! number of simulations                 
INTEGER :: Steps = 0          ! number of steps taken on  
                              ! a given walk 
INTEGER :: Walks              ! counter                               
INTEGER :: X, Y               ! position on jetty                     
REAL    :: PShip              ! probability of reaching ship          
REAL    :: R                  ! random number                         
 
CALL SYSTEM_CLOCK( Count ) 
Seed = Count 
CALL RANDOM_SEED( PUT = Seed )   ! seed from system clock 
 
DO Walks = 1, Sims 
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  Steps = 0; X = 0; Y = 0        ! each new walk starts  
                                 ! at the origin 
  DO WHILE (X <= 50 .AND. ABS(Y) <= 10 .AND. Steps < 10000) 
    Steps = Steps + 1            ! that's another step         
    CALL RANDOM_NUMBER( R )      ! random number for that step 
    IF (R < 0.6) THEN            ! which way did he go?        
      X = X + 1                  ! maybe forward               
    ELSE IF (R < 0.8) THEN                                     
      Y = Y + 1                  ! maybe to port               
    ELSE                                                       
      Y = Y - 1                  ! maybe to starboard          
    END IF 
     
  END DO 
  IF (X > 50) NSafe = NSafe + 1  ! he actually made it 
END DO 
 
PShip = NSafe * 100.0 / Sims     ! avoid integer division 
PRINT '("Probability of reaching ship: ", F6.1, "%")', PShip 
END PROGRAM DrunkenSailor 
 

   
Output: 

   
Probability of reaching ship:   89.1% 
Probability of reaching ship:   87.8% 
 

   

14.6. Dealing a Bridge Hand 
   
Simulation is the basis of most computer games. The program in this section simulates a deal of 13 
playing cards from a pack of 52. 
The names of the four suits are assigned to elements 0 to 3 of the character array Suit, and the 13 
face values are assigned to components 0 to 12 of the character array Value. Note that if a 
character array is initialized with a constructor, the character constants in the constructor must be 
blank-filled from the right to make them all the same length. 
To deal a card, a random integer in the range 0 to 51 is generated, i.e. the 52 cards are represented 
uniquely by the numbers 0 to 51. The main problem is that a given card may only be dealt once. To 
ensure this, an integer array Check is set up. All its elements are initially zero (meaning no cards 
have been dealt yet). The function RanInt generates a random integer and assigns it to Num. 
Check(Num) is checked. If it is still zero, that card has not yet been dealt, so Num is put into the 
next element of Hand, and Check(Num) is set to 1. This indicates that card Num has now been 
dealt. If Check(Num) already has the value 1 when Num comes up, it means that card Num has 
already been dealt, so another random integer is generated. This process is repeated 13 times, until 
the array Hand contains 13 unique numbers in the range 0 to 51. This part of the problem may be 
structure planned as follows: 
  Repeat  13 times: 
          Get a random number 
           Convert it to an integer Num in the range 0 to 51 

           While  Check(Num)  0 repeat: 
                  Get another random integer Num 
           Set Check(Num) to 1 
            Assign Num to the next element of Hand. 
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To print the hand of cards, each element of Hand is subjected to integer division by 13. The quotient 
NS will be in the range 0 to 3 and gives the suit. The remainder NV will be in the range 0 to 12, and 
gives the face value. E.g. the number 43 on division by 13 gives a quotient of 4 (Clubs) and a 
remainder of 3 (Six), as shown in the first line of output after the program, which is as follows:  

   
PROGRAM BridgeHand 
IMPLICIT NONE 
CHARACTER(8), DIMENSION(0:3) :: Suit = (/ "Spades  ", "Hearts  ", & 
                                        "Diamonds", "Clubs   " /) 
CHARACTER(5), DIMENSION(0:12) :: Value = (/ "Two  ", "Three", &  
        "Four ", "Five ", "Six  ", "Seven", "Eight", "Nine ", & 
        "Ten  ", "Jack ", "Queen", "King ", "Ace  " /) 
 
INTEGER, DIMENSION(0:51) :: Check = 0 
INTEGER                :: Card, Count, Num, NS, NV 
INTEGER, DIMENSION(13) :: Hand 
INTEGER, DIMENSION(1)  :: Seed 
 
CALL SYSTEM_CLOCK( Count ) 
Seed(1) = Count 
CALL RANDOM_SEED( Put = Seed ) 
 
DO Card = 1, 13                        ! deal 13 cards 
  Num = RanInt() 
  DO WHILE (Check(Num) /= 0)           ! already dealt ... 
    Num = RanInt()                     ! ... so try again 
  END DO 
  Check(Num) = 1                       ! tick it off 
  Hand(Card) = Num 
  NS = Hand(Card) / 13 
  NV = MOD( Hand(Card), 13 ) 
  PRINT '(3A, T20, 3I5)', Value(NV), " of ", Suit(NS), &  
                     Hand(Card), NS, NV 
END DO 
 
CONTAINS 
 
FUNCTION RanInt() 
  REAL R 
  INTEGER RanInt 
  CALL RANDOM_NUMBER( R ) 
  RanInt = INT( 52 * R ) 
END FUNCTION RanInt 
END 
 

   
A different hand will be dealt every time the program is run. Here is a sample hand (headings have 
been inserted into the text for clarity):  

   
Hand  NS   NV 
Six   of Clubs        43    3    4 
Jack  of Spades        9    0    9 
Queen of Clubs        49    3   10 
Nine  of Diamonds     33    2    7 
Three of Diamonds     27    2    1 
Two   of Clubs        39    3    0 
Five  of Clubs        42    3    3 
Three of Clubs        40    3    1 
Ace   of Clubs        51    3   12 
Eight of Diamonds     32    2    6 
Six   of Hearts       17    1    4 
Ten   of Hearts       21    1    8 
Six   of Spades        4    0    4 
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You may feel that the method of "shuffling" the cards with the DO WHILE loop is very inefficient, 
because as more cards are dealt, so the number of calls to RANDOM_NUMBER goes up. The 
following code segment shuffles all 52 cards, by starting with a sorted pack (by initializing Hand), 
and swopping them at random, rather like a Bubble Sort. 

   
INTEGER, DIMENSION(52) :: Hand = (/ (I, I = 0, 51) /) 
 
... 
 
DO Card = 1, 52 
  CALL RANDOM_NUMBER( R ) 
  Num = INT( 52 * R ) + 1 
  Temp = Hand(Num) 
  Hand(Num) = Hand(Card) 
  Hand(Card) = Temp 
END DO 
 

   
Note that Num is now in the range 1–52 since it represents the position of a card rather than the card 
itself. The only other change required is that Hand must have 52 elements. With a few amendments, 
a deal of all four hands can now be printed (you can also think about sorting each hand before it is 
printed, rather like players sort their cards after a deal). 
You could test which of the two shuffling methods is more efficient by incrementing a counter each 
time RANDOM_NUMBER is called. A number of sample runs would then be needed to get an estimate 
of the average number of calls. 

14.7. Traffic Flow 
   
A major application of simulation is in modelling the traffic flow in large cities, in order to try out 
different traffic light patterns on the computer before inflicting them on the real traffic (this has been 
done on a large scale in Leeds in the United Kingdom, for example). In this example we look at a 
very small part of the problem: how to simulate the flow of a single line of traffic through one set of 
traffic lights. We make the following assumptions (you can make additional or different ones if 
like):  
 1. Traffic travels straight, without turning. 
 2. The probability of a car arriving at the lights in any one second is independent of what 

happened during the previous second. This is called a Poisson process. This probability (call it 
p) may be estimated by watching cars at the intersection and monitoring their arrival pattern. In 
this simulation we take p = 0.3. 

 3. When the lights are green, assume the cars move through at a steady rate of, say, eight every ten 
seconds.  

 4. In the simulation, we will take the basic time interval to be ten seconds, so we want a display 
showing the length of the queue of traffic (if any) at the lights every ten seconds. 

 5. We will set the lights red or green for variable multiples of ten seconds.  
   
For the sample run below the lights are red for 40 seconds (Red = 4), green for 20 seconds 
(Green = 2). The simulation runs for 480 seconds (T = 48).  

   
PROGRAM Traffic 
IMPLICIT NONE 
INTEGER   :: Cars        ! number of cars in queue  
INTEGER   :: Count       ! system count 
INTEGER   :: Green, Red  ! period lights are green/red 
INTEGER   :: GreenTimer  ! counter for green lights 
INTEGER   :: Sec, Sim    ! counters 
INTEGER   :: RedTimer    ! counter for red lights 
INTEGER   :: T           ! period of simulation 
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INTEGER, DIMENSION(1) :: Seed 
 
REAL      :: P = 0.3     ! probability a car arrives in any second 
REAL      :: R           ! random number 
 
CHARACTER(1) :: Lights = "R"   ! lights are red at first 
T = 48; Red = 4; Green = 2     ! parameters set 
CALL SYSTEM_CLOCK( Count ) 
Seed = Count 
RedTimer = 0                   ! cumulative counters initialized 
GreenTimer = 0 
Cars = 0 
 
DO Sim = 1, T                     ! run for T 10-sec intervals 
  DO Sec = 1, 10 
    CALL RANDOM_NUMBER( R ) 
    IF (R < P) Cars = Cars + 1    ! another car arrives 
  END DO 
  IF (Lights == "G") THEN 
    CALL Go 
  ELSE 
    CALL Stop 
  END IF 
END DO 
 
CONTAINS 
 
SUBROUTINE Go 
! Lights are green here 
  GreenTimer = GreenTimer + 1      ! advance green timer 
  Cars = Cars - 8                  ! let 8 cars through 
  IF (Cars < 0) Cars = 0           ! may have been less than 8! 
  CALL PrintQ                      ! display traffic queue 
  IF (GreenTimer == Green) THEN 
    Lights = "R"                   ! change lights ... 
    GreenTimer = 0                 ! ... and reset timer 
  END IF 
END SUBROUTINE Go 
 
SUBROUTINE PrintQ 
! print the queue of cars 
  INTEGER I 
  PRINT '(I3, 2X, A1, 2X, 70A1)', Sim, Lights, ('*', I = 1, Cars)   
END SUBROUTINE PrintQ 
 
SUBROUTINE Stop 
! Lights are red here 
  RedTimer = RedTimer + 1          ! advance red timer 
  CALL PrintQ                      ! display traffic queue 
  IF (RedTimer == Red) THEN 
    Lights = "G"                   ! change lights ... 
    RedTimer = 0                   ! ... and reset timer 
  END IF 
END SUBROUTINE Stop 
END 
 

   
Output: 

   
  1  R  *** 
  2  R  ********                            
  3  R  ***********                         
  4  R  *************                       
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  5  G  **********                          
  6  G  ****                                
  7  R  ******                              
  8  R  ******                              
  9  R  ********                            
 10  R  *********                           
 ... 
 45  R  *************************           
 46  R  ***************************         
 47  G  *********************               
 48  G  **************                      
 

   
From this particular run it seems that a traffic jam is building up, although more and longer runs are 
needed to see if this is really so. In that case, one can experiment with different periods for red and 
green lights in order to get an acceptable traffic pattern before setting the real lights to that cycle (try 
it). This is the great value of this sort of simulation. Of course, we can get closer to reality by 
considering two-way traffic, and allowing cars to turn in both directions, and occasionally to break 
down, but this program gives the basic ideas.  

Chapter 14 Summary 
   
• A simulation is a computer program written to mimic a real-life situation which is apparently 

based on chance.  
• The pseudo-random number generator RANDOM_NUMBER returns a uniformly distributed 

random number in the range [0, 1), and is the basis of the simulations discussed in this chapter.  
• RANDOM_SEED enables the random number generator to be seeded by the user. The seed may 

be obtained from SYSTEM_CLOCK, which returns the system clock time. 
• Every independent event being simulated requires a separate random number.  

Chapter 14 Exercises 
   

14.1      In a game of Bingo the numbers 1 to 99 are drawn at random from a bag. Write a program to 
simulate the draw of the numbers (each number can be drawn only once), printing them ten to a line.  
14.2      One-dimensional random walk: A gas molecule is constrained to move along the x-axis. It 
starts at the origin. It moves randomly a large number of times, to the left or right (with equal 
probability), one unit at a time. Let the frequency F(X) be the number of times it is at position X. 
Write a program to compute these frequencies, and to print a bar chart representing them. Assume 
that the molecule never moves outside the range -Xmax to Xmax. 
14.3      RANDOM_NUMBER can be used to estimate π as follows (such a method is called a Monte 
Carlo method). Write a program which generates random points in a square of length 2, say, and 
which counts what proportion of these points falls inside the circle of unit radius that fits exactly into 
the square. This proportion will be the ratio of the area of the circle to that of the square. Hence 
estimate π. (This is not a very efficient method, as you will see from the number of points required 
to get even a rough approximation.)  
14.4      The aim of this exercise is to simulate bacteria growth. 
Suppose that a certain type of bacteria divides or dies according to the following assumptions:  
 1. during a fixed time interval, called a generation, a single bacterium divides into two identical 

replicas with probability p; 
 2. if it does not divide during that interval, it dies (i.e.ceases to be, "shuffles off this mortal coil");  
 3. the offspring (called daughters) will divide or die during the next generation, independently of 

the past history (there may well be no offspring, in which case the colony becomes extinct). 
   
Start with a single individual and write a program which simulates a number of generations. Take p 
= 0.75. The number of generations which you can simulate will depend on your computer system. 
Carry out a large number (e.g. 100) of such simulations. The probability of ultimate extinction, p(E), 
may be estimated as the proportion of simulations that end in extinction. You can also estimate the 
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mean size of the nth generation from a large number of simulations. Compare your estimate with the 

theoretical mean of ( )2 p n
.  

Statistical theory shows that the expected value of the extinction probability p(E) is the smaller of 1, 

and (1-p)/p. So for p = 0.75, p(E) is expected to be 1/3. But for p ≤ 05. , p(E) is expected to be 1, 
which means that extinction is certain (a rather unexpected result). You can use your program to test 
this theory by running it for different values of p, and estimating p(E) in each case.  
14.5      Dribblefire Jets Inc. make two types of aeroplane, the two-engined DFII, and the four-
engined DFIV. The engines are terrible and fail with probability 0.5 on a standard flight (the engines 
fail independently of each other). The manufacturers claim that the planes can fly if at least half of 
their engines are working, i.e. the DFII will crash only if both its engines fail, while the DFIV will 
crash if all four, or if any three engines fail.  
You have been commissioned by the Civil Aviation Board to ascertain which of the two models is 
less likely to crash. Since parachutes are expensive, the cheapest (and safest!) way to do this is to 
simulate a large number of flights of each model. For example, two calls of RANDOM_NUMBER 
could represent one standard DFII flight: if both random numbers are less than 0.5, that flight 
crashes, otherwise it doesn't. Write a program which simulates a large number of flights of both 
models, and estimates the probability of a crash in each case. If you can run enough simulations, you 
may get a surprising result. (Incidentally, the probability of n engines failing on a given flight is 
given by the binomial distribution, but you do not need to use this fact in the simulation.)  
14.6      Two players, A and B, play a game called Eights. They simulation: game of eights take it in 
turns to choose a number 1, 2 or 3, which may not be the same as the last number chosen (so if A 
starts with 2, B may only choose 1 or 3 at the next move). A starts, and may choose any of the three 
numbers for the first move. After each move, the number chosen is added to a common running 
total. If the total reaches 8 exactly, the player whose turn it was wins the game. If a player causes the 
total to go over 8, the other player wins. For example, suppose A starts with 1 (total 1), B chooses 2 
(total 3), A chooses 1 (total 4) and B chooses 2 (total 6). A would like to play 2 now, to win, but he 
can't because B cunningly played it on the last move, so A chooses 1 (total 7). This is even smarter, 
because B is forced to play 2 or 3, making the total go over 8 and thereby losing.  
Write a program to simulate each player's chances of winning, if they always play at random.  
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Chapter 15 Introduction 
   

In this chapter we look at how to write programs to solve problems involving matrices, with 
examples from such areas as linear algebra, networks, population dynamics, and Markov 
processes.  
The applications introduced here follow on from Chapter 9, where one-dimensional (rank-
one) arrays were discussed (such arrays are also called vectors). In this chapter we deal 
with arrays having more than one subscript, or multi-dimensional arrays. Although up to 
seven dimensions are allowed in Fortran, we will discuss only two-dimensional arrays here, 
since these are the most common. An array with two subscripts can represent a table of 
numbers, since one subscript (usually the first) can label the rows in the table, while the 
second subscript labels the columns. This is also the convention adopted for matrices. 
Tables and matrices look exactly the same, but since matrices are used in mathematical 
applications, we will deal with them separately.  
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15.1. Tables: A Concrete Example 
   
A ready-mix concrete company has three factories (S1, S2 and S3) which must supply three building 
sites (D1, D2 and D3). The costs, in some suitable currency, of transporting a load of concrete from 
any factory to any site are given by the cost table in Figure 15.1. 
 
Figure 15.1   Cost table  

 
The factories can supply 4, 12 and 8 loads per day respectively, and the sites require 10, 9 and 5 
loads per day respectively. The real problem is to find the cheapest way to satisfy the demands at the 
sites, but we are not considering that here.  
Suppose the factory manager proposes the following transportation scheme (each entry represents 
the number of loads of concrete to be transported along that particular route): 

 
This sort of scheme is called a solution to the transportation problem. The cost table (and the 
solution) can then be represented by tables C and X, say, where cij  is the entry in row i and column 
j of the cost table, with a similar convention for X.  
To compute the cost of the above solution, each entry in the solution table must be multiplied by the 
corresponding entry in the cost table. This operation is not to be confused with matrix multiplication, 
which is discussed below. We therefore want to calculate 
3 x 4 + 12 x 0 + ... + 24 x 5. 

The following program will do what is required:  
   
INTEGER, DIMENSION(3,3) :: C, X 
DATA ((C(I, J), J = 1,3), I = 1,3) & 
                             / 3, 12, 10, 17, 18, 35, 7, 10, 24 / 
DATA ((X(I, J), J = 1,3), I = 1,3) / 4, 0, 0, 6, 6, 0, 0, 3, 5 / 
TotCost = 0 
 
DO I = 1, 3 
  DO J = 1, 3 
    TotCost = TotCost + C(I,J) * X(I,J) 
  END DO 
END DO 
 
PRINT*, "Total cost:", TotCost 
END 

   
There are a number of important points to note. 
• In Fortran 90 terms, the arrays C and X have two dimensions (rank two). Each dimension has an 

extent of 3, and the shape of the arrays is (3, 3). 
• You might be wondering why the DATA statements need implied DO loops. Wouldn't it be much 

simpler to say 
   

DATA C / 3, 12, 10, 17, 18, 35, 7, 10, 24 / 
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 This raises an extremely important point, which has caused many a programmer to come to 
grief. Certain Fortran statements, such as DATA, READ and PRINT treat the elements of multi-
dimensional arrays in a particular order when the array is referenced by its name only. This 
order is called the array element order, and is obtained by changing the left-most subscript most 
rapidly. This is the reverse of odometer order, where the right-most subscript changes most 
rapidly, and which is used in many other languages. 

 As a result, the briefer form of the DATA statement used in this note is equivalent to the 
following assignments: 

   
C(1,1) = 3 
C(2,1) = 12 
C(3,1) = 10 
C(1,2) = 17 
C(2,2) = 18 
C(3,2) = 35 
C(1,3) = 7 
C(2,3) = 10 
C(3,3) = 24 
 

   
 Although it makes no difference to the answer here, the table is not represented by the 

conventional row-column order depicted in Figure 15.1. It is therefore always necessary to use 
implied DO loops when initializing or reading multi-dimensional arrays if the data is presented 
by rows. 

• As an alternative to the DATA statement, the arrays could have been read from the keyboard, or 
a file, e.g. 

   
READ*, ((C(I, J), J = 1,3), I = 1,3) 

   
   

 
   

 assuming the data to be in row order. 
• An array constructor may only be used to initialize a one-dimensional array. However, the 

intrinsic function RESHAPE may be used to initialize a multi-dimensional array from an array 
constructor, as shown in Chapter 9. 

• Fortran 90 provides a neater way of calculating the total cost of the transport scheme above. 
Since the intrinsic operators, when applied to arrays, operate on all elements of the array, the 

operation C * X will return the (3, 3) array with elements 
c xij ij . The intrinsic function SUM 

returns the (scalar) sum of all the elements of its array argument. Therefore the single statement 
   

SUM( C * X ) 
 

   
 will calculate the total cost. Try it out. 

15.2. Graphs Without Graphics 
   
Standard Fortran 90 does not provide output to graphics devices, such as a PC graphics screen. The 
module GraphMod described in this section enables you to draw a rough graph of any function on 
the standard output device (e.g. the PC text screen or printer). 
As an example, suppose you want to draw the graph of the function 

   
 
   

( )y t e tt= −0 05. sin
over the range 0 4≤ ≤t π , in steps of π / 20. There are two subroutines in 

the module which you need to call. The first is SetWindow(Xmin, Xmax, Ymin, Ymax), 
which sets up the world co-ordinates of your problem, i.e. the rectangular region of your co-ordinate 
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system which will be plotted. So if you want a vertical range between–1 and 1, call SetWindow 
with the following arguments: 

   
CALL SetWindow( 0.0, 4 * Pi, -1.0, 1.0 ) 
 

   
Note that the arguments must be real (integer constants will cause an error). 
You then need to set up two one-dimensional arrays X and Y, say, in general, where X(I) and 
Y(I) are the x and y co-ordinates of the ith point to be plotted. (In this example the x co-ordinate 
will be t.) Finally, you need to supply the plotting symbol, and a title. E.g.  

   
CALL Grapher( X, Y, "#", "Damped Oscillations" ) 

   
where # is the plotting symbol, and "Damped Oscillations" is the title. 
The complete main program to draw this graph is then: 

   
PROGRAM DrawGraph 
USE GraphMod 
 
IMPLICIT NONE 
INTEGER, PARAMETER :: NPts = 80 
INTEGER I 
REAL, PARAMETER    :: Pi   = 3.1415927 
REAL dt, T 
REAL X(NPts), Y(NPts) 
 
T = 0  
dt = Pi / 20.0 
 
DO I = 1, NPts 
  Y(I) = EXP(-0.05 * T) * SIN(T) 
  X(I) = T 
  T = T + dt 
END DO 
 
CALL SetWindow( 0.0, 4 * Pi, -1.0, 1.0 )        ! real arguments 
CALL Grapher( X, Y, "#", "Damped Oscillations" ) 
 
END PROGRAM DrawGraph 

   
 
Figure 15.2   Output generated by Grapher  
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The output is shown in Figure 15.2. Note that the x- and y-axes are also drawn. 
We need now to discuss the module, beginning with the mathematics required to transform the 
general point y(x) into a position on the screen or printer.  
The plotting is done essentially by printing a two-dimensional character array Point (in 
Grapher), where the y co-ordinate is transformed to row R, and the x co-ordinate is transformed to 
column C. A plotting symbol is then stored in Point( R, C ). Note that the y co-ordinate is 
represented by the first subscript, in keeping with the usual row-column notation. 

To be more precise, the element Y(I) (yi ) of the array Y must be transformed to R. Since we want 
a linear transformation we must have  
R ay bi= +  (15.1) 

where the constants a and b must be determined. Let's call the highest point on the graph yU . This 
is set by the argument Ymax of SetWindow, and must be transformed into row 1 (the top of the 
graph), so  
1= +ay bU  (15.2) 

The lowest point on the graph, yD  (set by Ymin) must be transformed into the maximum row Rm  
(set in GraphMod by the constant MaxRow), so 

R ay bm D= +  (15.3) 
Subtracting Equation 15.2 from Equation 15.3 immediately gives    

( ) ( )a R y ym D U= − −1 /
and substituting back into Equation 15-2 gives   

( ) ( )b y R y yU m D U= − − −1 1 /
These values for a and b may be used in Equation 15.1 to give    

( )( )R
y y R

y y
i U m

D U

=
− −

−
+

1
1
A similar transformation is used to scale the element X(I) (xi ) into a 

column C:  
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( )( )C
x x C

x x
i L m

R L

=
− −

−
+

1
1
where xL  and xR  are the left-most and right-most points on the graph 

(set by Xmin and Xmax respectively), and Cm  is the maximum column (set in GraphMod by 
MaxCol). 
The transformations for R and C are coded in GraphMod as two functions YScale and XScale 
(i.e. YScale(Y(I)) returns R), so that they can be generally available, e.g. to draw the x- and y-
axes.  
The complete coding for GraphMod is as follows:  

   
MODULE GraphMod  
IMPLICIT NONE  
INTEGER, PRIVATE, PARAMETER :: MaxRow = 20  
INTEGER, PRIVATE, PARAMETER :: MaxCol = 75  
REAL, PRIVATE :: XL, XR, YD, YU    ! first, last, down, up: global 
 
CONTAINS 
 
SUBROUTINE Grapher( X, Y, Symbol, Title ) 
! General graphing routine: arguments described in text 
  INTEGER I, J 
  REAL, INTENT(IN):: X(:), Y(:) 
  CHARACTER(*), INTENT(IN) :: Symbol, Title      ! assumed length 
  CHARACTER(1) Point( MaxRow, MaxCol ) 
  CHARACTER(10) MyFormat 
 
  WRITE( MyFormat, '("("I2, "A1)")' ) MaxCol       ! internal file 
  Point = " "                              ! all blanks initially 
  ! really should check whether axes lie in range 
  Point( 1:MaxRow, XScale(0.0) ) = ":"       ! y-axis 
  Point( YScale(0.0), 1:MaxCol ) = "-"       ! x-axis 
 
  DO I = 1, SIZE( X ) 
    Point( YScale(Y(I)), XScale(X(I)) ) = Symbol    ! Y is "row" 
  END DO 
 
  PRINT '(A80 /)', Title 
  PRINT MyFormat, ((Point(I,J), J = 1, MaxCol), & 
                                I = 1, MaxRow) ! by rows 
END SUBROUTINE Grapher 
 
SUBROUTINE SetWindow( Xmin, Xmax, Ymin, Ymax ) 
! Imports grapher limits to be available as globals 
  REAL Xmin, Xmax, Ymin, Ymax 
    XL = Xmin 
    XR = Xmax 
    YU = Ymax 
    YD = Ymin 
END SUBROUTINE SetWindow 
 
FUNCTION XScale( X ) 
! Scales x-coordinate to a column on the screen 
  INTEGER XScale 
  REAL X 
    XScale = NINT( (X - XL) * (MaxCol - 1) / (XR - XL) + 1 ) 
END FUNCTION XScale 
 
FUNCTION YScale( Y ) 
! Scales y-coordinate to a row on the screen 
  INTEGER YScale 
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  REAL Y 
    YScale = NINT( (Y - YU) * (MaxRow - 1) / (YD - YU) + 1 ) 
END FUNCTION YScale 
END MODULE GraphMod 

   
Once again, the use of a module with private variables means that it can be changed without 
reference to any code that uses it. 
The variables XL, XR etc. (set by SetWindow) are global to the module, so that they can be used by 
all its subprograms. 
The use of an internal file (the character variable MyFormat) enables the format specification for 
the main PRINT statement to be set at runtime according to the value of MaxCol. In this example, 
the value of MyFormat is "75A1". 
The axes may not lie in the region being plotted—this should strictly be checked before attempting 
to draw them. 

15.3. Matrices 
   
A matrix is a two-dimensional array which may be used in a wide variety of representations. For 
example, a distance array representing the lengths of direct connections in a network is a matrix. We 
will deal mainly with square matrices in this chapter (i.e. matrices having the same number of rows 
as columns), although in principle a matrix can have any number of rows or columns. A matrix with 
only one column is also called a vector.  
A matrix is usually denoted by a bold capital letter, e.g. A. Each entry, or element, of the matrix is 
denoted by the small letter of the same name followed by two subscripts, the first indicating the row 
of the element, and the second indicating the column. So a general element of the matrix A is called 
aij , meaning it may be found in row i and column j. If A has three rows and columns—(3 times 3) 
for short—it will look like this in general: 

     
a a a
a a a
a a a

11 12 13

21 22 23

31 32 33
















A special matrix which we will come across later is the identity matrix. This has 

ones on the main diagonal, and zeros everywhere else. E.g. the (3 times 3) identity matrix is 
     

1 0 0
0 1 0
0 0 1















  

Various mathematical operations are defined on matrices. Addition and subtraction are obvious, and 
may be done with the intrinsic operators in Fortran 90. So the matrix addition 
[A = B + C]  
translates directly into 

   
A = B + C 
 

   
where the arrays must clearly all have the same shape, i.e. the same extent along corresponding 
dimensions. 

Matrix multiplication 
   
Probably the most important matrix operation is matrix multiplication. It is used widely in such 
areas as network theory, solution of linear systems of equations, transformation of co-ordinate 
systems, and population modelling, for examples. The rules for multiplying matrices look a little 
weird if you've never seen them before, but will be justified by the applications that follow.  
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1 2
3 4

5 6
0 1









 ×

−


















  =

5 4
15 14

When two matrices A and B are multiplied together, their product is a third matrix C. The operation 
is written as  
C = AB 

and the general element cij  of C is formed by taking the scalar product of the ith row of A with the 

jth column of B. (The scalar product of two vectors x and y is x y x y1 1 2 2+ +..., where xi  and 

yi are the components of the vectors.) 
It follows that A and B can only be successfully multiplied (in that order) if the number of columns 
in A is the same as the number of rows in B. 
The general definition of matrix multiplication is as follows: If A is a (n x m) matrix and B is a (m x 
p) matrix, their product C will be a (n x p) matrix such that the general element cij  of C is given by  

   

c a bij ik kj
k

m

=
=
∑

1 Note that in general AB is not equal to BA (matrix multiplication is not 
commutative).  
Example: 

 
   
 
   
   

 
   
The Fortran 90 intrinsic operator * will not perform matrix multiplication. The intrinsic operation A 
* B, where A and B are arrays representing matrices, returns an array with each element the simple 
product of the two corresponding elements of A and B. We will discuss below how to redefine the 
intrinsic operator to perform matrix multiplication. But before we do this, it is instructive to write a 
subroutine to multiply two matrices directly: 

   
SUBROUTINE MyMatMul( A, B, C ) 
! multiplies A (n x m) by B (m x p)  
! and returns product in C (n x p) 
! performs no checks on shapes of A and B 
  REAL, DIMENSION(:,:) :: A, B, C 
  INTEGER I, J, M, N, P 
  N = SIZE( A, 1)     ! number of rows  
  M = SIZE( A, 2)     ! number of columns 
  P = SIZE( B, 2) 
  DO I = 1, N 
    DO J = 1, P 
      C(I,J) = SUM( A(I,1:M) * B(1:M,J) )   ! scalar product 
    END DO 
  END DO 
END SUBROUTINE MyMatMul 

   
Note that the intrinsic function SIZE has an optional second argument specifying the dimension of 
which the size is required. 
The statement which computes C(I,J) illustrates the use of Fortran 90 array sections. A(I,1:M) 
is the Ith row of A and B(1:M,J) is the Jth column of B. Both these sections are one-dimensional. 
The sum of their intrinsic product returns the scalar product of the two sections. This could be done 
explicitly with 

   
DO K = 1, M 
  C(I,J) = C(I,J) + A(I,K) * B(K,J) 
END DO 

   
as long as C is first initialized to zero. 
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Strictly, checks should be performed on the shapes of A and B to ensure that they are consistent. 
The main program below uses this subroutine to multiply matrices of any size: 

   
IMPLICIT NONE 
INTEGER I, J, N, M, P 
REAL, DIMENSION(:,:), ALLOCATABLE :: A, B, C 
PRINT*, "n, m, p:" 
READ*, N, M, P 
ALLOCATE( A(N,M) ) 
ALLOCATE( B(M,P) ) 
ALLOCATE( C(N,P) ) 
PRINT*, "matrix A:" 
READ*, ((A(I,J), J = 1, M), I = 1, N) 
PRINT*, "matrix B:" 
READ*, ((B(I,J), J = 1, P), I = 1, N) 
CALL MyMatMul( A, B, C ) 
PRINT*, ((C(I,J), J = 1, P), I = 1, N) 
END 

   
If you do this sort of thing often it will be worth your while to write subroutines to read and print 
matrices, in order to make sure that the data is read by rows. 
At this stage I can confess that Fortran 90 has two intrinsic functions, which return a dot (scalar) 
product and a matrix product:  DOT_PRODUCT( X, Y ) and MATMUL( A, B ). However, if 
you are serious about scientific programming it is part of your education to be able to code a matrix 
multiplication directly. 

Defined operations for matrix handling 
   
Matrix multiplication occurs so frequently in scientific programming that it would be convenient to 
define an operator for it. Consider the module MatMult: 

   
MODULE MatMult 
 
INTERFACE OPERATOR(.x.) 
 MODULE PROCEDURE MatTimesMat, MatTimesVector 
END INTERFACE 
 
CONTAINS 
 
FUNCTION MatTimesMat( A, B ) 
 REAL, DIMENSION(:,:) :: A, B 
 REAL, DIMENSION( SIZE(A,1), SIZE(B,2) ) :: MatTimesMat 
 MatTimesMat = MATMUL( A, B ) 
END FUNCTION MatTimesMat 
 
FUNCTION MatTimesVector( A, X ) 
 REAL, DIMENSION(:,:) :: A 
 REAL, DIMENSION(:)  :: X 
 REAL, DIMENSION( SIZE(A,1) ) :: MatTimesVector 
 MatTimesVector = MATMUL( A, X )  
END FUNCTION MatTimesVector 
 
END MODULE MatMult 

   
The function MatTimesMat returns the matrix resulting from the multiplication of its two matrix 
arguments, using the intrinsic function MATMUL. Note that since MatTimesMat cannot return an 
assumed-shape array (unless it has the POINTER attribute), it must be declared with the dimensions 
of its arguments, which are obtained at runtime. We should strictly check that A and B have the right 
number of rows and columns for multiplication. 
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MatTimesVector is similar, except that it handles multiplication of a matrix by a vector. (Note, 
however, that the intrinsic function MATMUL can handle both these situations.) Since a vector is 
simply a one-dimensional matrix, the definition of matrix multiplication given above also applies in 
this case, e.g. 

 
   
 
   
   

   
A multiplication operator (.x.) is defined in the interface block. The following code uses this 
module to test the two forms of matrix multiplication: 

   
USE MatMult 
REAL :: A(2,3) = RESHAPE( (/1,3,2,4, 1, 2/), (/2,3/) ) 
REAL :: B(3,2) = RESHAPE( (/1, 2, 1, 0, 2, 3/), (/3,2/) ) 
REAL :: D(2,2) = RESHAPE( (/1,3,2,4/), (/2,2/) ) 
REAL :: X(2) = (/ 2,3 /) 
REAL C(2,2) 
 
C = A .x. B                ! matrix times matrix 
PRINT "(2F3.0)", ((C(I,J), J=1,2),I=1,2) 
X = D .x. X                ! matrix times vector 
PRINT "(2F3.0)", X 

   
It would be more elegant to redefine the intrinsic operator *, so that one could write statements like 
C = A * B. There is a complication here, though, because intrinsic multiplication is defined for 
arrays, as we have seen, and an intrinsic operation may not be redefined. The solution is to define a 
new type to represent matrices, and then to overload the * operator. 
If a type 

   
TYPE MATRIX 
 REAL :: Elt   
END TYPE MATRIX 

   
is defined, matrices can be declared with 

   
TYPE (MATRIX), DIMENSION (2,2) :: M1, M2, M3 

   
A function which explicitly multiplies two matrices defined in this way can then be written: 

   
FUNCTION MatTimesMat( A, B ) 
 TYPE (MATRIX), DIMENSION(:,:) :: A, B 
 TYPE (MATRIX), DIMENSION( SIZE(A,1), SIZE(B,2) ) :: MatTimesMat 
 INTEGER I, J, EM 
 EM = SIZE(A,2)     ! columns of A must equal rows of B 
 DO I = 1, SIZE(A,1)  ! rows of A 
  DO J = 1, SIZE(B,2) ! columns of B 
   MatTimesMat(I,J) % Elt = SUM( A(I,1:EM) % Elt & 
               * B(1:EM,J) % Elt ) ! scalar product 
  END DO 
 END DO 
END FUNCTION MatTimes( A, B )     

   
The * operator can then be overloaded with an interface block, as above. 
Multiplication of a scalar by a matrix can be defined by a similar function, say, 

   
FUNCTION ScalarTimesMat( X, B ) 
 REAL X 
 TYPE (MATRIX), DIMENSION(:,:) B 
 TYPE (MATRIX), DIMENSION( SIZE(B,1), &  
  SIZE(B,2) ) :: ScalarTimesMat 
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 ... 
   
to handle expressions like 2 * B, where the operands are represented by the arguments, in that 
order. If you also want to be able to write B * 2 you would need a third function, say, 

   
FUNCTION MatTimesScalar( A, X ) 
 REAL X 
 TYPE (MATRIX), DIMENSION(:,:) A 
 TYPE (MATRIX), DIMENSION( SIZE(A,1), & 
  SIZE(A,2) ) :: MatTimesScalar 
 ... 

   
The interface block would then look like this (the functions must all be in the same module): 

   
INTERFACE OPERATOR(*) 
 MODULE PROCEDURE MatTimesMat, ScalarTimesMat, MatTimesScalar 
END INTERFACE 

   
It might also be convenient to redefine the assignment operator, to allow statements like A = 0. 
This must be done with a subroutine, where the two arguments represent the left- and right-hand 
sides of the assignment, e.g. 

   
SUBROUTINE MatFromScalar( Mat, X ) 
 REAL X 
 TYPE (MATRIX), DIMENSION(:,:) :: Mat 
 Mat % Elt = X 
END SUBROUTINE MatFromScalar 

   
The following interface block is then needed: 

   
INTERFACE ASSIGNMENT(=) 
 MODULE PROCEDURE MatFromScalar 
END INTERFACE 

   
It would be a nice project to build these facilities into a working module. Unfortunately, FTN90 
version 1.2 would not compile it. 
If you do a lot of heavy number crunching you might need to use double precision real kind. 

15.4. Array Handling Features 

Array expressions 
   
It is worth recalling that when the intrinsic operators are applied to matrices, they are applied to each 
element of the matrix. The expression 1 / A will not therefore return the matrix inverse of A, but 
rather a conformable array with every element the reciprocal of the corresponding element of A.  

Array sections 
   
Consider the array C representing the cost table in Figure 15.1. The statement  

   
A = C(1:2,1:2) + C(1:2,2:3) 

   
where A has shape (2, 2) adds two sections of C. The first consists of the first two rows and columns, 
and the second consists of the first two rows and the second and third columns. The statement is 
therefore equivalent to the matrix addition 

    
3 12
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Note that the addition is performed on corresponding positions along a dimension, not on 
corresponding subscripts. 
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As another example, suppose A is a (3 x 3) matrix. In order to find its inverse by Gauss reduction, a 
(3 x 6) augmented matrix B is formed, with A occupying its first three columns, and the identity 
matrix occupying its last three columns. E.g. if A is given by 

   
 

   
   

 
   

 

B will be 
   

 
   
   
 
 
 
   

If Idn represents the identity matrix, B can be set up in two lines: 
   
B(1:3, 1:3) = A 
B(1:3, 4:6) = Idn 

Some more intrinsic functions 
   
It is generally more efficient to use the intrinsic functions to handle arrays, rather than to operate 
directly on their elements. E.g. add up the elements of an array with SUM, rather than in a DO loop. 
MAXVAL(A) and MINVAL(A) return the maximum and minimum elements of the array A 
respectively. 
MERGE(A, B, MASK) is an elemental function, meaning it operates on each element of its 
arguments, returning a corresponding element. It returns A if the logical array MASK is true, and B 
otherwise. E.g. if the arguments represent matrices 

   
C = MERGE( A, B, A > B ) 

   
returns a matrix C such that cij  is the larger of aij  and bij  
RESHAPE(SOURCE, SHAPE) reshapes the array SOURCE into the shape given by the elements of 
the array SHAPE (which must be constant), i.e. the first element of SHAPE gives the extent (size) of 
the first dimension of the result. The reshaping is done by array element order, i.e. SOURCE is first 
strung out in array element order, and then reshaped.  
The following code  

   
INTEGER A(2,3), B(3,2) 
A(1,1:3) = (/ 1, 2, 3 /) 
A(2,1:3) = (/ 4, 5, 6 /) 
B = RESHAPE( A, SHAPE = (/ 3, 2 /) ) 

   
reshapes the array A from 

   
1 2 3 
4 5 6 

   
into the array B: 

   
1 5 
4 3 
2 6 

   
Get it? 
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Since an array constructor can only be used to construct a one-dimensional array, RESHAPE may be 
used to reshape such a constructor into a two-dimensional array. The following code sets up a (3 x 3) 
identity matrix: 

   
INTEGER, DIMENSION(3,3) :: Idn 
Idn = RESHAPE( SOURCE = (/ 1, 0, 0, 0, 1, 0, 0, 0, 1 /), & 
        SHAPE = (/ 3, 3 /) ) 

   
Note that intrinsic functions may be called with keyword actual argument, using the dummy 
argument names as keywords. Dummy argument names are given in Appendix C. 
SHAPE(A) returns a one-dimensional array holding the shape of A. 
SIZE(A [,DIM]) returns the size of the array A if DIM is absent, or the extent along dimension 
DIM if it is present. 
SPREAD(SOURCE, DIM, NCOPIES) makes NCOPIES duplicates of SOURCE by increasing its 
rank. The argument DIM specifies the dimension of the result along which the duplication takes 
place. This is best understood by examples, which may be generated by the following program:  

   
INTEGER, PARAMETER :: M = 3 
INTEGER DIM, NCOPIES, I, J, R, C 
INTEGER :: A(M) = (/ (I, I = 1, M) /) 
INTEGER, ALLOCATABLE :: B(:,:) 
PRINT*, "DIM, NCOPIES" 
READ*, DIM, NCOPIES 
IF (DIM == 1) THEN 
  R = NCOPIES      ! rows 
  C = M         ! columns 
ELSE IF (DIM == 2) THEN 
  R = M         ! rows 
  C = NCOPIES      ! columns 
END IF 
ALLOCATE( B(R,C) ) 
B = SPREAD( A, DIM, NCOPIES ) 
DO I = 1, R 
  PRINT*, (B(I,J), J = 1, C) 
END DO 
END 

   
The one-dimensional array A, with elements 1, 2, and 3 in this example, is to be duplicated. If DIM 
is 1 and NCOPIES is 4, B is returned as 

   
  1 2 3 
  1 2 3 
  1 2 3 
  1 2 3 

   
i.e. 4 copies are made along the first dimension of B. If DIM is 2 and NCOPIES is 2, the result is 

   
  1 1 
  2 2 
  3 3 

   
i.e. 2 copies are made along the second dimension. The source A may also be an array section. 
TRANSPOSE(A) returns the transpose of matrix A (rows transpose and columns interchanged).  
UNPACK(VECTOR, MASK, FIELD) returns an array with the same shape as the logical array 
MASK. The elements of the result corresponding to true elements of MASK are assembled in array 
element order from the one-dimensional array VECTOR. All other elements of the result are equal to 
FIELD if it is a scalar. E.g. the following code replaces all positive elements of A by the integers 1, 
2, 3, ... , and all negative elements by zero: 
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INTEGER A(4,4), V(16), F 
V = (/ (I, I = 1, 16) /) 
F = 0 
... assign values to A 
A = UNPACK( V, A > 0, F ) 

   
PACK performs the reverse operation. 
Further array handling intrinsic functions are described in Appendix C. 

15.5. Networks 
   

In our first application of matrix multiplication we consider a problem which at first glance 
seems to have nothing to do with it.  

A spy ring 
   
Suppose five spies in an espionage ring have the code names Alex, Boris, Cyril, Denisov and Eric 
(whom we can label A, B, C, D and E respectively). The hallmark of a good spy network is that no 
agent is able to contact all the others. The arrangement for this particular group is: 
• Alex can contact only Cyril; 
• Boris can contact only Alex or Eric; 
• Denisov can contact only Cyril; 
• Eric can contact only Cyril or Denisov. 

   
(Cyril can't contact anyone in the ring: he takes information out of the ring to the spymaster. 
Similarly, Boris brings information in from the spymaster: no-one in the ring can contact him.) The 
need for good spies to know a bit of matrix theory becomes apparent when we spot that the possible 
paths of communication between the spies can be represented by a (5 x 5) matrix, with the rows and 
columns representing the transmitting and receiving agents respectively, thus: 

 
We will call this matrix A. It represents a directed network with the spies at the nodes, and with arcs 
all of length 1, where a network is a collection of points called nodes. The nodes are joined by lines 
called arcs. In a directed network, movement (e.g. of information) is only possible along the arcs in 
one direction (see Figure 15.2).  
The matrix A is known as an adjacency matrix, with a adjacency matrix 1 in row i and column j if 
there is an arc from node i to node j, or a 0 in that position if there is no arc between those two 
nodes. The diagonal elements of A (i.e., a11 , a22 , etc.) are all zero because good spies do not talk 
to themselves (since they might then talk in their sleep and give themselves away). Each 1 in A 
therefore represents a single path of length 1 arc in the network. 
 
Figure 15.2   The network represented by the matrix A  
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Now let's multiply the 
adjacency matrix A by itself, 
to get what is called A2 
   
 
   
   
 
   
Row 2 and column 3 have 

been emboldened in the two versions of A above to help interpret A2. The element 2 in A2 (row 2, 
column 3) results when row 2 of A is multiplied term by term with column 3, and the products 
added. This gives us the scalar product  
1 x 1 + 0 x 0 + 0 x 0 + 0 x 1 + 1 x 1 = 2. 

The first non-zero term arises because there is a path from node 2 to node 1, which we will denote 
by (2–1), followed by a path (1–3), giving a composite path (2–1–3) of length 2, i.e. from Boris to 
Cyril via Alex. The second non-zero term arises because there is a path (2–5) followed by a path (5–
3), giving a second composite path (2–5–3) of length 2, i.e. from Boris to Cyril again, but via Eric 
this time. It is clear that the entries in A2 represent the number of paths of length 2 between the 
various nodes in the network (on the strict understanding that all arcs are of length 1). There are 
therefore only four paths of length 2: two from Boris to Cyril, as we have seen, one from Boris to 
Denisov, and one from Eric to Cyril. 
If we now multiply the matrix A2 by A again, to form the third power of A, we get the rather dull 
matrix 

   

A3

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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The single 1 in A3 tells us that there is only one path of length 3 in the network (i.e. with two 
intermediaries) and that it is from Boris to Cyril. Drawing the network, or alternatively examining 
the appropriate row and column in A2 and A that give rise to this single entry in A3, reveals that the 
actual route is Boris-Eric-Denisov-Cyril.  
If we now compute A4, we will find that every element is zero (such a matrix is called the null 
matrix), signifying that there are no paths of length 4 in the network, which can be verified by 
inspection. All higher powers of A will also obviously be null, since if there are no paths of length 4, 
there can hardly be any that are longer!  
In general, then, the element in row i and column j of the kth power of an adjacency matrix is equal 
to the number of paths consisting of k arcs linking nodes i and j.  
Coming back to our spy network, since the elements of A are the number of paths of length 1, and 
the elements of A2 are the number of paths of length 2, etc., then clearly the sum of all these powers 
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of A will tell us how many paths of any length there are altogether between the various nodes. We 
can therefore define a reachability matrix R for this (5 x 5) network:   

R A A A A= + + +2 3 4
R is also a (5 x 5) matrix, and its elements give the total number of paths 

of communication between the agents. Doing the calculation gives us   

R =
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0 0 1 0 0
1 0 3 1 1
0 0 0 0 0
0 0 1 0 0
0 0 2 1 0  

So we can read off from the reachability matrix R the fact that there are, for example, three different 
paths between Boris and Cyril, but only two between Eric and Cyril (the actual lengths of these 
paths will have been calculated in finding the powers of A). The name "reachability" is used because 
the non-zero elements of R indicate who may contact whom, directly or indirectly, or for a general 
distance network, which nodes can be reached from each node.  

The reachability matrix 
   
In general, the reachability matrix R of a (n x n) network may be defined as the sum of the first (n–
1) powers of its associated adjacency matrix A. You may be wondering why we can stop at the (n–

1)th power of A. The elements of 
( )A n−1  will be the number of paths that have (n–1) arcs, i.e. that 

connect n nodes (since each arc connects two nodes). Since there are no further nodes that can be 
reached, it is not necessary to raise A to the nth power.  
The subroutine Reachable in the program below computes the reachability matrix R for any 
network given the adjacency matrix A, i.e. it computes    

( )R A A A A n= + + + + −2 3 1" where A is (n x n). It uses the array B to store the intermediate 
powers of the array A, adding them to R each time. 
The complete program to compute a reachability matrix follows. It uses the module MatMult 
defined in Section 15.3 

   
PROGRAM Reach 
USE MatMult 
 
IMPLICIT NONE 
REAL, DIMENSION(:,:), ALLOCATABLE :: A, R  ! use dynamic arrays 
INTEGER I, J, N 
 
PRINT*, "Number of nodes in network:" 
READ*, N 
ALLOCATE( A(N,N), R(N,N) ) 
PRINT*, "Enter Adjacency matrix by rows:" 
READ*, ((A(I,J), J=1,N), I = 1,N) 
 
CALL Reachable( A, R ) 
 
PRINT*, "Reachability matrix:" 
PRINT* 
 
DO I = 1, N 
 PRINT "(20F3.0)", (R(I,J), J = 1, N) 
END DO 
 
CONTAINS 
 
SUBROUTINE Reachable( A, R ) 
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 REAL, DIMENSION(:,:) :: A, R 
 REAL, DIMENSION( SIZE(A,1), SIZE(A,2) ) :: B ! automatic object 
 B = A 
 R = A 
 N = SIZE(A,1) 
 DO I = 1, N-2 
  B = B .x. A 
  R = R + B 
 END DO 
END SUBROUTINE Reachable 
 
END PROGRAM Reach 

   
It may help to go through Reachable by hand for n = 5 to see how it works. Keep track of the 
contents of B and R in terms of the adjacency matrix A.  

15.6. Leslie Matrices: Population Growth 
   
Another very interesting and useful application of matrices is in population dynamics. The rabbit 
population model of Chapter 10 can be made a lot more realistic if we allow some rabbits to die 
from time to time. The approach we are going to take requires that we divide the rabbit population 
up into a number of age classes, where the members of each age class are one time unit older than 
the members of the previous class, the time unit being whatever is convenient for the population 

being studied (days, months, etc.). If X i  is the size of the ith age class, we define a survival factor 
Pi  as the proportion of the ith class that survive to the (i + 1)th age class, i.e. the proportion that 

"graduate". Fi  is defined as the mean fertility of the ith class. This is the mean number of newborn 
individuals expected to be produced during one time interval by each member of the ith class at the 
beginning of the interval (only females count in biological modelling, since there are always enough 
males to go round!).  

Suppose for our modified rabbit model we have three age classes, with X 1 , X 2, and X 3 members 
respectively. We will call them young, middle-aged and old-aged for convenience. We will take our 

time unit as one month, so X1 are the number that were born during the current month, and which 

will be considered as youngsters at the end of the month. X 2 are the number of middle-aged rabbits 

at the end of the month, and X 3 the number of oldsters. Suppose the youngsters cannot reproduce, 

so that F1 0= . Suppose the fertility rate for middle-aged rabbits is 9, so F2 9= , while for 

oldsters F3 12= . The probability of survival from youth to middle-age is one third, so P1 1 3= / , 

while no less than half the middle-aged rabbits live to become oldsters, so P2 0 5= .  (we are 
assuming for the sake of illustration that all old-aged rabbits die at the end of the month—this can be 
corrected easily). With this information we can quite easily compute the changing population 
structure month by month, as long as we have the population breakdown to start with. If we now 
denote the current month by t, and next month by (t + 1), we can refer to this month's youngsters as 
X t1( ) , and to next month's as X t1 1( )+ , with similar notation for the other two age classes. We 
can then write a scheme for updating the population from month t to month (t + 1) as follows: 

   
 
   

( ) ( ) ( )
( ) ( )
( ) ( )

X t F X t F X t

X t P X t

X t P X t

1 2 2 3 3

2 1 1

3 2 2

1

1

1

+ = +

+ =

+ =
We now define a population vector X(t), with three components, 

X t1( ) , X t2 ( ) , and X t3 ( ) , representing the three age classes of the rabbit population in month t. 
The above three equations can then be rewritten as 
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+ t  
where the subscript at the bottom of the vectors indicates the month. We can write this even more 
concisely as the matrix equation  
X(t + 1) = LX(t), 
where L is the matrix 

     
0 9 12

1 3 0 0
0 1 2 0
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in this particular case. L is called a Leslie matrix. A population model can always be written in the 
form of Equation 15.4 if the concepts of age classes, fertility, and survival factors, as outlined above, 
are used.  
Now that we have established a matrix representation for our model, we can easily write a program 
using matrix multiplication and repeated application of Equation 15.4: 
X(t + 2) = LX(t + 1) 
X(t + 3) = LX(t + 2), etc. 
However, we only need a single one-dimensional array X in the program, because repeated matrix 
multiplication by the two-dimensional array L will continually update it:  
X = L .x. X 
(using the .x. matrix multiplication operator defined in module MatMult). We will assume to 

start with, that we have one old (female) rabbit, and no others, so X X1 2 0= = , and X 3 1=  
The program is then simply:  

   
PROGRAM Leslie  
USE MatMult  
IMPLICIT NONE  
 
REAL, DIMENSION(3,3) :: L ! Leslie matrix 
REAL, DIMENSION(3)  :: X ! Population vector 
INTEGER T 
 
L = 0 
L(1,2) = 9 
L(1,3) = 12 
L(2,1) = 1.0 / 3  
L(3,2) = 0.5 
X = (/ 0, 0, 1 /) 
PRINT "(A5, 4A14)", "Month", "Young", "Middle", "Old", "Total" 
PRINT* 
 
DO T = 1, 24 
 X = L .x. X 
 PRINT "(I5, 4F14.1)", T, X, SUM( X ) 
END DO 
 
END PROGRAM Leslie 

   
The output, over a period of 24 months, is: 

   
Month     Young      Middle         Old        Total 
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  1        12.0         0.0         0.0         12.0 
  2         0.0         4.0         0.0          4.0 
  3        36.0         0.0         2.0         38.0 
  4        24.0        12.0         0.0         36.0 
  5       108.0         8.0         6.0        122.0 
  6       144.0        36.0         4.0        184.0 
  ... 
 22  11184720.0   1864164.0    466020.0   13514904.0 
 23  22369716.0   3728240.0    932082.0   27030038.0 
 24  44739144.0   7456572.0   1864120.0   54059836.0 

   
Note how A format may be used to get headings in the right place. 
It so happens that there are no "fractional" rabbits in this example. If there are any, they should be 
kept, and not rounded (and certainly not truncated). They occur because the fertility rates and 
survival probabilities are averages. 
If you look carefully at the output you may spot that after some months the total population doubles 
every month. This factor is called the growth factor, and is a property of the particular Leslie matrix 
being used (for those who know about such things, it's the dominant eigenvalue of the matrix). The 
growth factor is 2 in this example, but if the values in the Leslie matrix are changed, the long-term 
growth factor changes too (try it and see).  
You probably didn't spot that the numbers in the three age classes tend to a limiting ratio of 24:4:1. 
This can be demonstrated very clearly if you run the model with an initial population structure 
having this limiting ratio. This limiting ratio is called the stable age distribution of the population, 
and again it is a property of the Leslie matrix (in fact, it is the eigenvector belonging to the dominant 
eigenvalue of the matrix). Different population matrices lead to different stable age distributions.  
The interesting point about this is that a given Leslie matrix always eventually gets a population into 
the same stable age distribution, which increases eventually by the same growth factor each month, 
no matter what the initial population breakdown is. For example, if you run the above model with 
any other initial population, it will always eventually get into a stable age distribution of 24:4:1 with 
a growth factor of 2 (try it and see).  

15.7. Markov Chains 
   

Often a process that we wish to model may be represented by a number of possible 
discrete (i.e. discontinuous) states that describe the outcome of the process. For example, 
if we are spinning a coin, then the outcome is adequately represented by the two states 
"heads" and "tails" (and nothing in between). If the process is random, as it is with spinning 
coins, there is a certain probability of being in any of the states at a given moment, and 
also a probability of changing from one state to another. If the probability of moving from 
one state to another depends on the present state only, and not on any previous state, the 
process is called a Markov chain. The progress of the drunk sailor in Chapter 14 is an 
example of such a process. Markov chains are used widely in such diverse fields as 
biology and business decision making, to name just two areas. 

 
A random walk 

   
This example is a variation on the random walk problem of Chapter 14. A street has six 
intersections. A drunk man wanders down the street. His home is at intersection 1, and his favourite 
bar at intersection 6. At each intersection other than his home or the bar he moves in the direction of 
the bar with probability 2/3, and in the direction of his home with probability 1/3. He never wanders 
down a side street. If he reaches his home or the bar, he disappears into them, never to re-appear 
(when he disappears we say in Markov jargon that he has been absorbed).  
We would like to know: what are the chances of him ending up at home or in the bar, if he starts at a 
given corner (other than home or the bar, obviously)? He can clearly be in one of six states, with 
respect to his random walk, which can be labelled by the intersection number, where state 1 means 



 216 

Home and state 6 means Bar. We can represent the probabilities of being in these states by a six-

component state vector X(t), where X ti ( )  is the probability of him being at intersection i at 
moment t. The components of X(t) must sum to 1, since he has to be in one of these states. 
We can express this Markov process by the following transition probability matrix, P, where the 
rows represent the next state (i.e. corner), and the columns represent the present state: 

 
The entries for Home-Home and Bar-Bar are both 1 because he stays put there with certainty.  
Using the probability matrix P we can work out his chances of being, say, at intersection 3 at 
moment (t + 1) as 

     
( ) ( ) ( )X t X t X t3 2 41 2 3 1 3+ = +/ /

To get to 3, he must have been at either 2 or 4, and his 
chances of moving from there are 2/3 and 1/3 respectively. 
Mathematically, this is identical to the Leslie matrix problem. We can therefore form the new state 
vector from the old one each time with a matrix equation: 
X(t + 1) = PX(t). 
If we suppose the man starts at intersection 2, the initial probabilities will be (0; 1; 0; 0; 0; 0). The 
Leslie matrix program may be adapted with very few changes to generate future states: 

   
PROGRAM Drunk 
USE MatMult 
IMPLICIT NONE 
 
REAL, DIMENSION(6,6) :: P   ! probability transition matrix 
REAL, DIMENSION(6)  :: X   ! state vector          
INTEGER I, T                          
                                
P = 0             ! construct probability matrix  
DO I = 3,6                           
 P(I,I-1) = 2./3                        
 P(I-2,I-1) = 1./3                       
END DO                             
P(1,1) = 1                           
P(6,6) = 1                           
X = (/ 0, 1, 0, 0, 0, 0 /)   ! initialize state vector    
 
PRINT "(A4, 6A9)", "Time", "Home", "2", "3", "4", "5", "Bar" 
PRINT* 
 
DO T = 1, 50 
 X = P .x. X 
 PRINT "(I4, 6F9.4)", T, X 
END DO 
 
END PROGRAM Drunk 

   
Output: 

   
Time   Home       2       3       4       5     Bar 
                              
  1  0.3333  0.0000  0.6666  0.0000  0.0000  0.0000 
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  2  0.3333  0.2222  0.0000  0.4444  0.0000  0.0000 
  3  0.4074  0.0000  0.2962  0.0000  0.2962  0.0000 
  4  0.4074  0.0987  0.0000  0.2962  0.0000  0.1975 
  5  0.4403  0.0000  0.1646  0.0000  0.1975  0.1975 
  6  0.4403  0.0548  0.0000  0.1755  0.0000  0.3292 
  7  0.4586  0.0000  0.0951  0.0000  0.1170  0.3292 
  8  0.4586  0.0317  0.0000  0.1024  0.0000  0.4072 
  9  0.4691  0.0000  0.0552  0.0000  0.0682  0.4072 
 10  0.4691  0.0184  0.0000  0.0596  0.0000  0.4527 
 ... 
 40  0.4838  0.0000  0.0000  0.0000  0.0000  0.5161 
 ... 
 50  0.4838  0.0000  0.0000  0.0000  0.0000  0.5161 

   
By running the program for long enough, we soon find the limiting probabilities: he ends up at home 
about 48% of the time, and at the bar about 52% of the time. Perhaps this is a little surprising; from 
the transition probabilities, we might have expected him to get to the bar rather more easily. It just 
goes to show that you should never trust your intuition when it comes to statistics!  
Note that the Markov chain approach is not a simulation: one gets the theoretical probabilities each 
time (this can all be done mathematically, without a computer). But it is interesting to confirm the 
limiting probabilities by simulating the drunk's progress, using a random number generator (see 
Exercise 15.3 at the end of the chapter).  

15.8. Solution of Linear Equations 
   

A problem that often arises in scientific applications is the solution of a system of linear 
equations, e.g.  
 2x–y + z = 4     (15.5) 
 x + y + z = 3     (15.6) 
 3x–y–z = 1      (15.7) 
One method of solution is by Gauss reduction, which we discuss now.  

Gauss reduction 
   
Write the coefficients of the left-hand side as a matrix, with the right-hand side constants as a vector 
to the right of the matrix, separated by a vertical line, thus:  

   
 
   

2 1 1 4
1 1 1 3
3 1 1 1

−

− −















  

This is simply shorthand for the original set, and is sometimes augmented matrix called the 
augmented matrix of the system. As long as we perform only row operations on the numbers, we can 
omit the symbols x, y, and z each time. We will refer to the augmented matrix as A.  

We start with the first row ( )R1 , and call it the pivot row. We call the element a11 2( )=  the pivot 
element. Divide the whole pivot row by the pivot element, so the augmented array now looks like 
this:   

1 1 2 1 2 2
1 1 1 3
3 1 1 1

−

− −

















/ /
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Rows R2  and R3  are now called target rows. The object is to get zeros in all the target rows below 

(and above, if necessary) the pivot element. Take the target row R2 . Replace each element in the 
row by itself minus the corresponding element in the pivot row. The array now looks like this:    

1 1 2 1 2 2
0 3 2 1 2 1
3 1 1 1

−

− −

















/ /
/ /

 

Now take the target row R3 . To reduce a31 to zero with an operation involving the pivot row 

requires replacing the target row by itself minus the pivot row multiplied by a31 (bearing in mind 

for the subsequent computer solution that this operation can change the value of a31 itself!):   

1 1 2 1 2 2
0 3 2 1 2 1
0 1 2 5 2 5

−

− −

















/ /
/ /
/ /  

We now designate R2  as the pivot row, and the new aa22 as the pivot element. The whole 

procedure is repeated, except that the target rows are now R1 and R3 , and the object is to get zeros 
in these two rows above and below the pivot element. The result is:   

1 0 2 3 7 3
0 1 1 3 2 3
0 0 8 3 16 3

/ /
/ /
/ /− −















  

Now take R3  as the pivot row, with the new a33 as the pivot element, and R1 and R2  as target 
rows. After repeating similar operations on them, the array finally looks like this: 

   
 
   

1 0 0 1
0 1 0 0
0 0 1 2















  

Since we have retained the mathematical integrity of the system of equations by performing 
operations on the rows only, this is equivalent to 
 x + 0y + 0z = 1 
 0x + y + 0z = 0 
 0x + 0y + z = 2. 
The solution may therefore be read off as x = 1, y = 0, z = 2.  
The subroutine Gauss in the program below performs a Gauss reduction on a system of any size. 
The augmented array A is passed as an argument. On entry, its rightmost column should contain the 
right-hand side constants of the equations. On return, the rightmost column will contain the solution.  

   
PROGRAM GaussTest 
IMPLICIT NONE 
 
REAL, DIMENSION(:,:), ALLOCATABLE :: A   ! augmented matrix 
INTEGER I, J, N 
 
PRINT*, "How many equations?" 
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READ*, N 
ALLOCATE( A(N, N+1) )           ! extra column for RHS 
PRINT*, "Enter augmented matrix by rows:" 
READ*, ((A(I,J), J = 1,N+1), I = 1,N) 
CALL Gauss( A ) 
PRINT* 
PRINT*, "Solution is in last column:" 
DO I = 1, N 
 PRINT "(10F7.2)", (A(I,J), J = 1, N+1) 
END DO 
 
CONTAINS 
 
SUBROUTINE Gauss( A ) 
 REAL, DIMENSION(:,:) :: A 
 REAL PivElt, TarElt         
 INTEGER :: N           ! number of equations 
 INTEGER PivRow, TarRow 
 
 N = SIZE( A, 1 )  
 DO PivRow = 1, N         ! process every row 
  PivElt = A( PivRow, PivRow )  ! choose pivot element 
  A( PivRow, 1:N+1 ) = A( PivRow, 1:N+1 ) / PivElt ! divide  
                           ! whole row 
  ! now replace all other rows by target row minus pivot row ... 
  ! ... times element in target row and pivot column: 
   
  DO TarRow = 1, N 
   IF (TarRow /= PivRow) THEN 
    TarElt = A( TarRow, PivRow ) 
    A( TarRow, 1:N+1 ) = A( TarRow, 1:N+1 )   & 
               - A( PivRow, 1:N+1 ) * TarElt 
   END IF 
  END DO 
 END DO 
END SUBROUTINE Gauss 
END PROGRAM GaussTest 

   
Note that the two statements 

   
A( PivRow, 1:N+1 ) = A( PivRow, 1:N+1 ) / PivElt ! divide  
                         ! whole row 
A( TarRow, 1:N+1 ) = A( TarRow, 1:N+1 )   & 
           - A( PivRow, 1:N+1 ) * TarElt 

   
process entire rows. If you do a lot of numerical analysis you will appreciate the power of such 
Fortran 90 array expressions. 
Unfortunately, things can go wrong with our subroutine: 
 1. The pivot element could be zero. This happens quite easily when the coefficients are all 

integers. However, rows of the array can be interchanged (see below) without changing the 
system of equations. So a non-zero pivot element can often be found in this way (but see the 
next two cases).  

 2. A row of zeros could appear right across the array, in which case a non-zero pivot element 
cannot be found. In this case the system of equations is indeterminate and the solution can only 
be determined down to as many arbitrary constants as there are rows of zeros.  

 3. A row of the array could be filled with zeros, except for the extreme right-hand element. In this 
case the equations are inconsistent, which means there are no solutions. 

   
It is a nice programming project to extend the subroutine Gauss to deal with these three cases.  

Matrix inversion by Gauss reduction 
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Consider the system of equations: 
 2x + 2y + 2z = 0 
 3x + 2y + 2z = 1 
 3x + 2y + 3z = 1 
If we define the matrix A as 

   

A
2 2 2
3 2 2
3 2 3

=














  

and the vectors x and b as 
   

x ,   b ,=
















=
















x
y
z

0
1
1  

we can write the above system of three equations in matrix form as 
   

2 2 2
3 2 2
3 2 3

0
1
1
































=
















x
y
z  

or even more concisely as the single matrix equation 
Ax = b.  
The solution may then be written as 

x A b,1= −
 

where A −1
 is the matrix inverse of A (i.e. the matrix which when multiplied by A gives the identity 

matrix). 
This provides a slightly route to the solution. Gauss reduction can also be used to invert a matrix. To 
invert the matrix A, construct the augmented matrix A | I, where I is the identity matrix: 

    
2 2 2 1 0 0
3 2 2 0 1 0
3 2 3 0 0 1















  

Now perform a Gauss reduction until the identity matrix has appeared to the left of the vertical line, 
so that the augmented array finally looks as follows: 

    
1 0 0 1 1 0
0 1 0 3 2 0 1
0 0 1 0 1 1

−
−

−

















/

 
The matrix to the right of the line is the inverse of A. If A is not invertible, the process breaks down 
and a row of zeros appears. The solution may then be found directly from Equation 15.8: x = 1, y = –
1, z = 0. 
Our subroutine Gauss can be adapted quite easily to find the matrix inverse. It is rewritten below as 
a function Inv, which returns the inverse of its argument.Inv can be included in the module 
MatMult of Section 15.3 and overloaded with a defined operator .INV. for matrix inversion: 
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MODULE MatMult 
... 
INTERFACE OPERATOR(.INV.) 
 MODULE PROCEDURE Inv 
END INTERFACE 
 
CONTAINS 
... 
FUNCTION Inv( Mat ) 
 REAL, DIMENSION(:,:) :: Mat 
 REAL, DIMENSION( SIZE(Mat,1), SIZE(Mat,1) ) :: Inv  ! must be  
                            ! square 
 REAL, DIMENSION( SIZE(Mat,1), 2 * SIZE(Mat,1) ) :: A ! augmented 
 REAL, DIMENSION(:), ALLOCATABLE :: TempRow      ! spare row 
 REAL PivElt, TarElt         
 INTEGER :: N           ! number of equations 
 INTEGER PivRow, TarRow 
 
 N = SIZE( Mat, 1 )  
 A = 0               ! initialize 
 A( 1:N, 1:N ) = Mat        ! first N columns 
 DO I = 1, N            ! identity in cols N+1 to 2N 
  A( I, N+I ) = 1 
 END DO 
 
 DO PivRow = 1, N         ! process every row 
  PivElt = A( PivRow, PivRow )  ! choose pivot element 
  IF (PivElt == 0) THEN      ! check for zero pivot 
   K = PivRow + 1   ! run down rows to find a non-zero pivot 
   DO WHILE (PivElt == 0 .AND. K <= N) 
    PivElt = A( K, PivRow )   ! try next row 
    K = K + 1          ! K will be 1 too big 
   END DO  
   IF (PivElt == 0) THEN     ! it's still zero 
    PRINT*, "Couldn't find a non-zero pivot: solution rubbish" 
    RETURN                         
   ELSE                           
    ! non-zero pivot in row K, so swop rows PivRow and K:  
    ALLOCATE( TempRow(2*N) )  ! dynamic store       
    TempRow = A( PivRow, 1:2*N )              
    K = K - 1          ! adjust for overcount    
    A( PivRow, 1:2*N ) = A( K, 1:2*N )           
    A( K, 1:2*N ) = TempRow                 
    DEALLOCATE( TempRow )    ! throw away        
   END IF                          
  END IF 
  A( PivRow, 1:2*N ) = A( PivRow, 1:2*N ) / PivElt ! divide  
                           ! whole row 
    ! now replace all other rows by target row minus pivot row ... 
  ! ... times element in target row and pivot column: 
   
  DO TarRow = 1, N 
   IF (TarRow /= PivRow) THEN 
    TarElt = A( TarRow, PivRow ) 
    A( TarRow, 1:2*N ) = A( TarRow, 1:2*N )  & 
               - A( PivRow, 1:2*N ) * TarElt 
   END IF 
  END DO 
 END DO 
 
 ! finally extract the inverse from columns N+1 to 2N: 
 Inv = A( 1:N, N+1:2*N ) 
END FUNCTION Inv 
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END MODULE MatMult 
   
Note the following features: 
• The argument Mat is the matrix to be inverted. A is the augmented matrix: it must have twice as 

many columns as A. Mat is assigned to the first N columns of A; the identity matrix is assigned 
to the rightmost N columns. 

• The number of columns, N+1, in Gauss must be replaced by 2*N. 
• Inv handles a zero pivot element, by looking down the column under the pivot, until it finds a 

non-zero element. If it cannot find a non-zero pivot, it returns with a message. If it finds a non-
zero pivot in row K, it swops row K with the pivot row, PivRow. Note how easily this is done 
with array sections. A temporary row, TempRow, is allocated from dynamic storage and 
deallocated after the swop. 

• Finally, the rightmost N columns of A are assigned to Inv and returned. 
   
Using the amended version of MatMult we can find the solution of Equation 15.8 in one statement: 

   
X = .INV. A .x. B 

   
Below is a main program to solve any linear system of equations in this way: 

   
PROGRAM TestInv 
USE MatMult 
IMPLICIT NONE 
 
REAL, DIMENSION(:,:), ALLOCATABLE :: A, AInv, X(:), B(:) 
INTEGER I, J, N 
 
PRINT*, "Number of equations:" 
READ*, N 
ALLOCATE( A(N, N), AInv(N, N), X(N), B(N) )            
PRINT*, "Enter coefficient matrix A by rows:" 
READ*, ((A(I,J), J = 1,N), I = 1,N) 
PRINT*, "Enter RHS vector B:" 
READ*, B 
 
X = .INV. A .x. B 
PRINT* 
PRINT*, "Solution:" 
PRINT "(10F7.2)", X 
 
END PROGRAM TestInv 

   
You can test it on Equations 15.5–15.7 if you like, with the coefficient of x in the first equation 
replaced by zero. This gives a non-zero pivot immediately. The solution is x = 1, y = –1, z = 3.  
This method, which is fairly straightforward to code, and very elegant, is quite adequate for small 
systems (less than about 20 equations?). Larger systems will often have many zero elements, which 
makes the Gauss reduction inefficient, since most of the row operations will be on zeros. There are 
more efficient procedures for such systems.  

Chapter 15 Summary 
   
• A table or matrix may be represented in Fortran 90 by a two-dimensional array.  
• Statements such as DATA, READ and PRINT treat the elements of multi-dimensional array in 

array element order, by default, i.e. the leftmost subscript changes most rapidly. Implied DO 
loops may be used to treat elements by rows. 

• Array constructors may only be used to initialize one-dimensional arrays. However, the intrinsic 
function RESHAPE can reshape a constructor into any shape. 

• There are a number of useful intrinsic functions for matrix handling. 
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• The operators .x. and .INV. were defined for matrix multiplication and inversion 
respectively. 

• The intrinsic operator * cannot be redefined to multiply arrays, since this is an existing intrinsic 
operation. Either a different token must be used, or a derived type must be defined. 

Chapter 15 Exercises 
   

15.1   When I first learnt to program there were very few fancy functions to do all the work for you! 
Write your own subroutine TRANS(A)which replaces A by its transpose, without using any 
additional arrays. 
15.2   Compute the limiting probabilities for the drunk in Section 15.7 when he starts at each of the 
remaining intersections in turn, and confirm that the closer he starts to the bar, the more likely he is 
to end up there.  
15.3   Write a program to simulate the progress of the drunk in Section 15.7 down the street. Start 
him at a given intersection, and generate a random number to decide whether he moves toward the 
bar or home, according to the probabilities in the transition matrix. For each simulated random walk, 
record whether he ends up at home or in the bar. Repeat a large number of times. The proportion of 
walks that end up in either place should approach the limiting probabilities computed using the 
Markov model referred to in Exercise 15.2. Hint: if the random number is less than 2/3 he moves 
toward the bar (unless he is already at home or the bar, in which case that random walk ends), 
otherwise he moves toward home.  
15.4   Write a few lines of code to interchange columns i and j of the matrix A. 
15.5   The following system, suggested by T.S. Wilson, illustrates nicely the problem of ill-
conditioning mentioned in Exercise 7.3:  
10x + 7y + 8z + 7w = 32 
7x + 5y + 6z + 5w = 23 
8x + 6y +10z + 9w = 33 
7x + 5y + 9z + 10w = 31 

Use the Gauss reduction program in this chapter to show that the solution is x = y = z = w = 1. Then 
change the right-hand side constants to 32.01, 22.99, 32.99 and 31.01 (a change of about 1 in 3000) 
and find the new solution. Finally, change the right-hand side constants to 32.1, 22.9, 32.9 and 31.1 
and observe what effect this has on the "solution".  
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Chapter 16 Introduction to Numerica0l Methods 
 

Chapter 16 Introduction 
16.1. Equations 
• Newton's method 
• Complex roots 
• The Bisection method 
• Passing procedures as arguments 

   
16.2. Integration 
• The Trapezoidal Rule 
• Intrinsic functions as arguments 
• Simpson's Rule 

   
16.4. First-Order Differential Equations 
• Vertical motion under air resistance: Euler's method 
• Euler's method in general 
• Bacteria growth: Euler's method 
• A predictor-corrector method 

   
16.5. Runge-Kutta Methods 
• Runge-Kutta fourth-order formulae 
• Systems of differential equations: a predator-prey model 

   
16.6. A Differential Equation Modelling Package 
16.7. Partial Differential Equations: a Tridiagonal System 
• Heat conduction 

   
Chapter 16 Summary 
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Chapter 16 Introduction 
   

A major scientific use of computers is in finding numerical solutions to mathematical 
problems which have no analytical solutions, i.e. solutions which may be written down in 
terms of polynomials and the known mathematical functions. In this chapter we look briefly 
at three areas where numerical methods have been highly developed: solving equations, 
evaluating integrals, and solving differential equations. 
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16.1. Equations 
   

In this section we consider how to solve equations in one unknown numerically. The 
general way of expressing the problem is to say that we want to solve the equation f(x) = 0, 
ie. we want to find its root (or roots) x. There is no general method for finding roots 
analytically for any given f(x).  

Newton's method 
   
This is perhaps the easiest numerical method to implement for solving equations, and was 
introduced earlier. It is an iterative method, meaning that it repeatedly attempts to improve an 

estimate of the root: if xk  is an approximation to the root, the next approximation xk+1  is given by 

( )
( )

x x
f x
f xk k

k

k
+ = −

′1

 
where f'(x) is df/dx. 
A structure plan to implement Newton's method is: 

 1. Read in starting value x0 and required accuracy e 

 2. While ( )f x ek ≥
 repeat up to k = 20, say: 

( ) ( )
( )

x x f x f x

x f x
k k k k

k k

+

+ +

= − ′1

1 1

/

Print  and  
 3. Stop 

   
It is necessary to limit step 2 since the process may not converge. 

A program using Newton's method to solve the equation x x3 3 0+ − = , starting with x0 2= , is 
given in Chapter 8. If you run it you will see that the values of x converge rapidly to the root. 

As an exercise, try running the program with different starting values of x0  to see whether the 
algorithm always converges. 
Also try finding a non-zero root of 2x = tan(x), using Newton's method. You might have some 
trouble with this one. If you do, you will have demonstrated the one serious problem with Newton's 
method: it converges to a root only if the starting guess is "close enough." Since "close enough" 
depends on the nature of f(x) and on the root, one can get into difficulties here. The only remedy is 
some intelligent trial-and-error work on the initial guess—this is considerably easier if you sketch 
f(x) carefully. 
If the method fails to find a root, you should use the Bisection method, discussed below. 
Complex roots 
Newton's method can also find complex roots, but only if the starting guess is complex. The 

following program finds a complex root of x x2 1 0+ + = : 
   
PROGRAM ComplexNewton 
COMPLEX :: X 
 
READ*, X 
PRINT "(2A10)", "Re(x)", "Im(x)" 
PRINT* 
 
N = 1 
DO WHILE (ABS( F(X) ) >= 1E-6 .AND. N < 20) 
  X = X - F(X) / DF(X) 
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  PRINT "(2F10.4)", X 
  N = N + 1 
END DO 
 
CONTAINS 
  FUNCTION F(X) 
    COMPLEX X, F 
    F = X ** 2 + X + 1 
  END FUNCTION F 
   
  FUNCTION DF(X) 
    COMPLEX X, DF 
    DF = 2 * X + 1 
  END FUNCTION DF 
END PROGRAM ComplexNewton 

   
If you start with (0, 2), i.e. x = −2 1 , x converges rapidly: 
 

Re(x) Im(x) 
-0.2941 1.1765 
-0.4511 0.8975 
-0.4982 0.8653 
-0.5000 0.8660 
-0.5000 0.8660 
Since complex roots occur in complex conjugate pairs, the other root is (-0.5, -0.866). 
Note that a complex constant must be enclosed in parentheses for list-directed input. 
You can use this version to find real roots also, except you must then obviously give real starting 
values. 

The Bisection method 
   
Consider again the problem of solving the equation f(x) = 0, where 

( )f x x x= + −3 3  

We attempt to find by inspection, or trial-and-error, two values of x, call them x L  and xR , such 

that f x L( )  and f xR( )  have different signs, i.e. f x f xL R( ) ( ) < 0. If we can find two such 
values, the root must lie somewhere in the interval between them, since f x( ) changes sign on this 
interval (see Figure 16.1). In this example, xL = 1 and xR = 2  will do, since f ( )1 1= −  and 
f ( )2 7= . In the Bisection method, we estimate the root by x M , where x M  is the midpoint of the 

interval [ ]x xL R,
, i.e.  

( )x x xM L R= + / 2  (16.1) 

Then if f xM( )  has the same sign as f xL( ) , as drawn in the figure, the root clearly lies between 
xM  and xR . We must then redefine the left-hand end of the interval as having the value of xM , i.e. 

we let the new value of xL be 
xM . Otherwise, if f xM( )  and f xL( )  have different signs, we let 

the new value of xR  be xM , since the root must lie between xL  and xM  in that case. Having 

redefined xL  or xR , as the case may be, we bisect the new interval again according to Equation 

16.1 and repeat the process until the distance between xL  and xR  is as small as we please. 
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Figure 16.1   The Bisection method  

 
The neat thing about this method is that we can calculate before starting how many bisections are 

needed to obtain a certain accuracy, given initial values of xL  and xR . Suppose we start with 
x aL = , and x bR = . After the first bisection the worst possible error ( )E1  in xM  is 

E a b1 2= − /
,since we are estimating the root as being at the midpoint of the interval [a, b]. The 

worst that can happen is that the root is actually at xL  or xR , in which case the error is E1 . 

Carrying on like this, after n bisections the worst possible error En  is given by 
E a bn

n= − / 2
. If 

we want to be sure that this is less than some specified error E, we must see to it that n satisfies the 

inequality 
a b En− </ 2

, i.e. 

( )
( )

n
a b E

>
−log /

log 2  (16.2) 
Since n is the number of bisections, it must be an integer. The smallest integer n that exceeds the 
right-hand side of Inequality 16.2 will do as the maximum number of bisections required to 
guarantee the given accuracy E.  
The following scheme may be used to program the Bisection method. It will work for any function 
f x( ) that changes sign (in either direction) between the two values a and b, which must be found 
beforehand by the user. The implementation follows below. 
 1. Read a, b and E 

 2. Initialize x L  and xR  
 3. Compute maximum bisections n from Inequality 16.2 
 4. Repeat n times: 

Compute xM  according to Equation 16.1: 
( ) ( )If   then

    Let 
otherwise
    Let 

f x f x
x x

x x

L M

L M

R M

>

=

=

0

 
 5. Print root xM  
 6. Stop. 

   
We have assumed that the procedure will not find the root exactly; the chances of this happening 
with real variables are infinitesimal. 
The main advantage of the Bisection method is that it is guaranteed to find a root if you can find two 

starting values for xL  and xR  between which the function changes sign. You can also compute in 
advance the number of bisections needed to attain a given accuracy. Compared to Newton's method 
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it is inefficient. Successive bisections do not necessarily move closer to the root, as usually happens 
with Newton's method. In fact, it is interesting to compare the two methods on the same function to 
see how many more steps the Bisection method requires than Newton's method. For example, to 

solve the equation x x3 3 0+ − = , the Bisection method takes 21 steps to reach the same accuracy 
as Newton's in five steps. 
Passing procedures as arguments 
You may want to write a general purpose numerical methods module containing among other 
procedures a subroutine to carry out the Bisection method. In that case, it would be convenient to 
pass the function f(x) as an argument. This can be done if the function is defined as an external or 
module function. An explicit interface is needed in this case. 
The module NumUtils below contains a subroutine Bisect which accepts a function name Fung 
as a dummy argument: 

   
MODULE NumUtils 
IMPLICIT NONE 
 
CONTAINS 
 
  SUBROUTINE Bisect(A, B, E, N, XM, Fung) 
  ! implements Bisection method 
    REAL, INTENT(IN) :: A, B, E        ! limits and accuracy 
    REAL, INTENT(OUT) :: XM            ! root 
    INTEGER, INTENT(OUT) :: N          ! number of bisections 
    REAL XL, XR 
    INTEGER I 
    INTERFACE                          ! recommended not required 
      FUNCTION Fung(X) 
        REAL Fung 
        REAL, INTENT(IN) :: X 
      END FUNCTION Fung 
    END INTERFACE 
 
    XL = A                             ! initialize 
    XR = B 
    N = LOG(ABS(A-B)/E) / LOG(2.0) + 1 ! N must exceed formula 
value 
    DO I = 1, N                        ! perform bisections 
      XM = (XL + XR) / 2 
      IF (Fung(XL) * Fung(XM) > 0) THEN 
        XL = XM 
      ELSE 
        XR = XM 
      END IF 
    END DO 
  END SUBROUTINE Bisect 
END MODULE NumUtils 

   
Note: 
• The dummy argument Fung is declared in an interface block inside Bisect. 
• The subroutine returns the number of bisections N and the root XM. 

   
The actual name of the function is F. It is defined as an external function: 

   
FUNCTION F(X) 
  REAL F 
  REAL, INTENT(IN) :: X 
  F = X ** 3 + X - 3 
END FUNCTION F 

   
A main program to put this all together is then: 
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PROGRAM TestBisect 
USE NumUtils 
 
IMPLICIT NONE 
REAL A, B, E, X 
INTEGER N 
INTERFACE 
  FUNCTION F(X) 
    REAL F 
    REAL, INTENT(IN) :: X 
  END FUNCTION F 
END INTERFACE 

16.2. Integration 
   

Although most "respectable" mathematical functions can be differentiated analytically, the 
same cannot be said for integration. There are no general rules for integrating, as there are 

for differentiating. For example, the indefinite integral of a function as simple as e x− 2

cannot 
be found mathematically. We therefore need numerical methods for evaluating integrals. 
This is actually quite easy to do, and depends on the well-known fact that the definite 

integral of a function f x( )  between the limits x = a and x = b is equal to the area under 
f x( )  bounded by the x-axis and the two vertical lines x = a and x = b.  So all numerical 

methods for integrating simply involve more or less ingenious ways of estimating the area 

under f x( ) . 

The Trapezoidal Rule 
   
The method we will use here is called the Trapezoidal (or Trapezium) Rule. The area under f x( ) 
is divided into vertical panels each of width h, called the step-length. If there are n such panels, then 
nh b a= − , i.e. n b a h= −( ) / . If we join the points where successive panels cut f x( ), we can 
estimate the area under f x( ) as the sum of the area of the resulting trapezia. If we call this 
approximation to the integral S, then 

( ) ( ) ( )S h f a f b f xi
i

n

= + +










=

−

∑2
2

1

1

 (16.3) 

where x a ihi = + . Equation 16.3 is the Trapezoidal Rule, and provides an estimate for the integral 

( )f x dx
a

b

∫  
We can include a function Trap to evaluate an integral in this way in our module NumUtils: 

   
FUNCTION Trap( A, B, H, Fung ) 
  INTERFACE  
    FUNCTION Fung(X) 
      REAL Fung 
      REAL, INTENT(IN) :: X 
    END FUNCTION Fung 
  END INTERFACE 
  REAL Trap 
  REAL, INTENT(IN) :: A, B, H 
  INTEGER I, N 
 
  N = NINT( (B-A) / H ) 
  Trap = 0 
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  DO I = 1, N-1 
  ! using notation defined in text 
    Trap = Trap + Fung( A + I * H ) 
  END DO 
  Trap = H / 2 * (Fung(A) + Fung(B) + 2 * Trap) 
END FUNCTION Trap 

   
Its dummy argument Fung is again the function to be integrated, so there is an interface block for 
Fung. 
It is assumed that the user will choose h in such a way that the number of steps n will be an 
integer—a check for this could be built in. 

As an example, let's integrate f x x( ) = 3
 between the limits 0 and 4. We need to write an external 

function again: 
   
FUNCTION F(X) 
  REAL F 
  REAL, INTENT(IN) :: X 
  F = X ** 3 
END FUNCTION F 
 

   
A main program could look like this: 

   
PROGRAM TestTrap 
USE NumUtils 
IMPLICIT NONE 
 
REAL A, B, H 
INTERFACE 
  FUNCTION F(X) 
    REAL F, X 
  END FUNCTION F 
END INTERFACE 
 
PRINT*, "Enter A, B, H:" 
READ*, A, B, H 
PRINT "('Integral:', F8.4)", Trap( A, B, H, F ) 
 
END PROGRAM TestTrap 

   
With h = 0.01, the estimate is 64.0004 (the exact integral is 64). You will find that as h gets smaller, 
the estimate gets more accurate. 

This example assumes that f x( ) is a continuous function which may be evaluated at any x. In 
practice, the function could be defined at discrete points supplied as results of an experiment. For 
example, the speed of an object v(t) might be measured every so many seconds, and one might want 
to estimate the distance travelled as the area under the speed-time graph. In this case, Trap would 
have to be changed by replacing Fung with an array Values(0:N), say. References to 
Fung(A), Fung(A+I*H) and Fung(B) would have to be changed to Values(0), 
Values(I) and Values(N) respectively. 

 

Intrinsic functions as arguments 
Trap can be used to integrate an intrinsic function, which must then be declared in an INTRINSIC  
statement. E.g. to integrate sine insert the statement 

   
INTRINSIC SIN 

   
into TestTrap, and change the call to Trap: 
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PRINT "('Integral:', F8.4)", Trap( A, B, H, SIN ) 

Simpson's Rule 
   
Simpson's rule is a method of numerical integration which is a good deal more accurate than the 
Trapezoidal Rule, and should always be used before you try anything fancier. It also divides the area 

under the function to be integrated, f x( ), into vertical strips, but instead of joining the points 
f xi( )  with straight lines, every set of three such successive points are fitted with a parabola. To 
ensure that there are always an even number of panels, the step-length n is usually chosen so that  

there are 2n panels, i.e. n b a h= −( ) / ( )2 . 
Using the same notation as above, Simpson's rule estimates the integral as 

( ) ( ) ( ) ( )S h f a f b f x f xi i
i

n

i

n

= + + +








−

==

−

∑∑3
2 42 2 1

11

1

 
The coding for this formula, which can be included in the module NumUtils is: 

   
FUNCTION Simp( A, B, H, Fung ) 
  REAL, INTENT(IN) :: A, B, H 
  REAL Simp 
  INTEGER I, N 
  INTERFACE 
    FUNCTION Fung(X) 
      REAL Fung 
      REAL, INTENT(IN) :: X 
    END FUNCTION Fung 
  END INTERFACE 
 
  Simp = 0 
  N = NINT( (B-A) / (2 * H) )         ! 2N panels now 
 
  DO I = 1, N-1 
  ! using notation defined in text 
    Simp = Simp + 2 * Fung( A +  2 * I * H ) 
  END DO 
  DO I = 1, N 
    Simp = Simp + 4 * Fung( A +  (2 * I - 1) * H ) 
  END DO 
 
  Simp = H / 3 * (Fung(A) + Fung(B) + Simp) 
 
END FUNCTION Simp 

   
Note that N is half its previous size. 

If you try Simpson's Rule out on f x x( ) = 3
 between any limits, you will find rather surprisingly, 

that it gives the same result as the exact mathematical solution. This is a nice extra benefit of the 
rule: it integrates cubic polynomials exactly (which can be proved). 

16.3. Numerical Differentiation 
   
The Newton quotient for a function f x( ) is given by 

( ) ( )f x h f x
h

+ −

 (16.4) 

where h is "small". As h tends to zero, this quotient approaches the first derivative, df dx/ . 
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The Newton quotient may therefore be used to estimate a derivative numerically. It is a useful 
exercise to do this with a few functions for which you know the derivatives. This way you can see 
how small you can make h before rounding errorsrounding error cause problems. These arise 
because Expression 16.4 involves subtracting two terms that eventually become equal when the limit 
of the computer's accuracy is reached. 

As an example, the following program uses the Newton quotient to estimate f x' ( )  for f s x( ) = 2
  

at x = 2, for smaller and smaller values of h (the exact  answer is 4). 
   
REAL NQ, X, H 
INTEGER I, N 
X = 2 
H = 1 
PRINT*, "How many?" 
READ*, N 
PRINT "(A10, A12)", "H", "NQ" 
 
DO I = 1, N 
  NQ = (F(X + H) - F(X)) / H 
  PRINT "(E10.4, F12.8)", H, NQ 
  H = H / 10 
END DO 
 
CONTAINS 
  FUNCTION F(X) 
  REAL F, X 
    F = X ** 2 
  END FUNCTION F 
END 

   
Output: 

   
         H          NQ 
0.1000E+01  5.00000000 
0.1000E00  4.09999371  
0.1000E-01  4.01000977 
0.1000E-02  4.00066423 
0.1000E-03  3.99589586 
0.1000E-04  4.00543261 
0.1000E-05  3.81469774 

   
The results show that the best h for this particular problem is about 10 3−

. But for h much smaller 
than this the estimate becomes totally unreliable. Using double precision real kind improves the 
accuracy. Change REAL to REAL(2): 

   
         H          NQ 
... 
0.1000E-04  4.00001000 
0.1000E-05  4.00000100 
0.1000E-06  4.00000009 
0.1000E-07  3.99999998 
0.1000E-08  4.00000033 
0.1000E-09  4.00000033 
0.1000E-10  4.00000033 
0.1000E-11  4.00035560 

   
The best value is now about 10 8−

. 
Generally, the best h for a given problem can only be found by trial and error. Finding it constitutes 
a major problem of numerical analysis. This problem does not arise with numerical integration, 
because numbers are added to find the area, not subtracted.  
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16.4. First-order Differential Equations 
   

The most interesting situations in real life that we may want to model, or represent 
quantitatively, are usually those in which the variables change in time (e.g. biological, 
electrical or mechanical systems). If the changes are continuous, the system can often be 
represented with equations involving the derivatives of the dependent variables. Such 
equations are called differential equations. The main aim of a lot of modelling is to be able 
to write down a set of differential equations that describe the system being studied, as 
accurately as possible. Very few differential equations can be solved analytically, so once 
again, numerical methods are required. We will consider the simplest method of numerical 
solution in this section: Euler's method (Euler rhymes with boiler). We will also consider 
briefly how to improve it. 

Vertical motion under air resistance: Euler's method 
   
To illustrate Euler's method, we will take an example from Newtonian dynamics, of motion under 
gravity against air resistance. Suppose a skydiver steps out of a hovering helicopter, but does not 
open his parachute for 24 seconds. We would like to find his velocity as a function of time during 
this period. Assuming air resistance cannot be neglected (ask any skydiver!), he falls subject to two 
opposing vertical forces: gravity acting downward, and air resistance acting upward. The air 
resistance force is assumed to be proportional to the square of his velocity (this is fairly accurate). 
Applying Newton's second law to the skydiver, we have  

mdv dt mg pv/ = − 2
 

where m is his mass, g the acceleration due to gravity, v his velocity, and p is a constant of 
proportionality. Dividing by m, we can rewrite this as 

dv dt g kv/ = − 2
 (16.5) 

where k p m= / . Equation 16.5 is the differential equation describing the motion of the skydiver 
under gravity. The constant k varies with shape and mass, and may be found experimentally from 

the terminal velocity of the falling object. This terminal velocity ( )vT  is reached when the object 
stops accelerating, and may be found by equating the right-hand side of Equation 16.5 to zero. Thus  

v g kT = /  
For a man wearing an unopened parachute, k is found to be about 0.004 in MKS units. Before we 
proceed with the numerical solution of Equation 16.5 we should note that this particular differential 
equation can be solved analytically, since it is of the type called variable separable: 

( ) ( )
v t

a C e
C e

akt

akt=
−

+

−

−

2

2
 (16.6) 

where a vT=  and 
( )[ ] ( )[ ]C a v a v= + −0 0/

. 
Euler's method for solving Equation 16.5 numerically consists of replacing the derivative on the left-
hand side with its Newton quotient, and equating this to the right-hand side as it stands. After a 
slight rearrangment of terms, we get 

( ) ( ) ( )[ ]v t h v t h g kv t+ = + − 2

 (16.7) 

If we divide up the time period t into n intervals of h, then t = nh. If we define vn  as v(t), 

then ( )v v t hn+ = +1 . We can therefore replace Equation 16.7 with the iterative scheme 

( )v v h g kvn n n+ = + −1
2
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Since we are given the initial condition v0 0= , Equation 16.8 provides a numerical scheme for 

finding the Euler approximation vn  to v(t) in general. 
It is very easy to program Euler's method. We can also test its accuracy by trying different values of 
h and comparing the results with the exact solution. The following program uses Euler's method as 
implemented in Equation 16.8 to estimate v for the first 24 seconds of the skydiver's motion. It also 
computes the exact solution for comparison. 

   
PROGRAM Para 
IMPLICIT NONE 
REAL, PARAMETER :: g = 9.8 
REAL K, H, T, T0, Tend, V, V0, X 
INTEGER I, N 
 
PRINT*, "Enter K, H, T0, V(T0), Tend:" 
READ*, K, H, T0, V0, Tend 
X = (Tend - T0) / H 
N = INT( X + SPACING(X)) + 1       ! trip count 
T = T0 
V = V0 
PRINT "(3A10)", "Time", "Euler", "Exact" 
 
DO I = 1, N 
  PRINT "(3F10.2)", T, V, Vexact(T, V0, G, K) 
  V = V + H * (g - K * V * V) 
  T = T + H 
END DO 
 
CONTAINS 
  FUNCTION Vexact(T, V0, G, K) 
    REAL Vexact 
    REAL, INTENT(IN) :: g, K, T, V0 
    REAL A, C 
    A = SQRT( g / K ) 
    C = (A + V0) / (A - V0) 
    Vexact = A * (C - EXP(-2*A*K*T))/(C + EXP(-2*A*K*T)) 
  END FUNCTION Vexact 
END PROGRAM Para 

   
Taking h = 2 and k = 0.004 we get: 

   
      Time     Euler     Exact 
      0.00      0.00      0.00 
      2.00     19.60     18.64 
      4.00     36.13     32.64 
      6.00     45.29     41.08 
      8.00     48.48     45.50 
     10.00     49.28     47.65 
     12.00     49.45     48.65 
     14.00     49.49     49.11 
     16.00     49.50     49.32 
     18.00     49.50     49.42 
     20.00     49.50     49.46 
     22.00     49.50     49.48 
     24.00     49.50     49.49 

   
Euler's method gets more accurate if you reduce h, e.g. with h = 0.5 the worst error is only about 
3%. Note that the errors get smaller as terminal velocity approaches.  
In a real problem, we don't usually know the exact answer, or we wouldn't be using a numerical 
method in the first place. The only check is to use smaller and smaller values of h until it doesn't 
seem to make much difference, e.g. continue halving h until the results for a fixed t only change by 
an acceptably small amount. 
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Now let's see what happens when the skydiver opens his parachute. The air resistance term will be 
different now. For an open parachute, k = 0.3 is quite realistic. We can use the same program as 
before, although we need to supply a new starting value of 49.49 for v. Since h = 0.5 worked well 
before, we try the same value now. The results are rather surprising (t is the time elapsed since the 
parachute opened): 

   
      Time     Euler     Exact             
      0.00     49.49     49.49             
      0.50   -313.00      7.62             
      1.00 -15003.36      6.02             
      1.50**********      5.77             
      2.00**********      5.73             

   
Not only does Euler's solution show that the man flies upward, he does so with tremendous speed, 
and soon exceeds the speed of light! The results make nonsense physically. Fortunately, in this 
example our intuition tells us that something is wrong. The only remedy is to reduce h. Some 
experimenting will reveal that the results for h = 0.01 are much better: 

   
      Time     Euler     Exact 
      0.00     49.49     49.49 
      0.01     42.24     43.18 
      0.02     36.99     38.31 
      0.03     32.98     34.45 
      0.04     29.81     31.31 
      0.05     27.25     28.71 
      ... 
      0.10     19.30     20.43 
      ... 
      0.20     12.69     13.32 
      ... 
      1.00      5.98      6.02 
      ... 
      2.00      5.72      5.73 

   
Finally, note that Euler's method will be just as easy to compute if the air resistance term is not kv2

, 

but kv1 8.
 (which is more realistic), although now an analytic solution cannot be found. 

Euler's method in general 
   

In general we want to solve a first-order differential equation of the form 
dy dx f x y y/ ( , ), ( )= 0 given. 
Table 16.1 Bacteria growth  

   
Time Euler Predictor- 
Corrector Exact  
0.1 1000 1000 1000 
0.5 1400 1480 1492 
1.0 1960 2190 2226 
1.5 2744 3242 3320 
2.0 3842 4798 4953 
...    
5.0 28925 50422 54598 
...    
8.0 217795 529892 601845 
...    
10.0 836683 2542344 2980958 

Euler's method replaces dy/dx by its Newton quotient, so the differential equation becomes 
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( ) ( ) ( )y x h y x
h

f x y
+ −

= ,
 

Rearranging, we get 

( )y y hf x yn n n n+ = +1 ,  (16.9) 

defining yn  as y xn( ) , where x x nhn = = , and where y y0 0= ( ) . 

Bacteria growth: Euler's method 
   

Euler's method performs quite adequately in the skydiver problem once we have got the 
right value of the step-length h. In case you think that the numerical solution of all 
differential equations is just as easy, we will now consider an example where Euler's 
method doesn't do too well. 
Suppose a colony of 1000 bacteria are multiplying at the rate of r = 0.8 per hour per 
individual (i.e. an individual produces an average of 0.8 offspring every hour). How many 
bacteria are there after 10 hours? Assuming that the colony grows continuously and 
without restriction, we can model this growth with the differential equation 

dN/dt = rN,     N(0) = 1000,        
   (16.10),    

where N(t) is the population size at time t. This process is called exponential growth. 
Equation 16.10 may be exponential growth solved analytically to give the well-known 
formula for exponential growth: 

( ) ( )N t N ert= 0  
To solve Equation 16.10 numerically, we apply Euler's algorithm to it to get 
N N rhNk k k+ = +1  (16.11) 

where N N tk = ( ) , and N0 1000= . Taking h = 0.5 gives the results shown in Table 16.1 
where the exact solution is also given. 
This time the numerical solution (in the column headed Euler) is not too good. In fact, the 
error gets worse at each step, and after 10 hours of bacteria time it is about 72%. Of 
course, the numerical solution will improve if we take h smaller, but there will still always be 
some value of t where the error exceeds some acceptable limit. 
We may ask why Euler's method works so well with the skydiver, but so badly with the 
bacteria. By using the Newton quotient each time in Euler's method, we are actually 
assuming that the derivative changes very little over the small interval h, i.e. that the 
second derivative is very small. Now in the case of the skydiver, by differentiating Equation 
16.5 again with respect to time, we see that 

d v dt kv dv dt2 2 2/ ( ) / ,= −  
which approaches zero as the falling object reaches its terminal velocity. In the bacteria 
case, the second derivative of N(t) is found by differentiating Equation 16.10: 

d N dt rdN dt r N t2 2 2/ / ( )= =  
This is far from zero at t = 10. In fact, it is approaching three million! The Newton quotient 
approximation gets worse at each step in this case. 
There are better numerical methods for overcoming these sorts of problems. Two of them 
are discussed below. More sophisticated methods may be found in most textbooks on 
numerical analysis. However, Euler's method may always be used as a first approximation 
as long as you realize where and why errors may arise.  

A Predictor-Corrector Method 
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One improvement on the solution of 
dy/dx = f(x, y),     y(0) given 
is as follows. The Euler approximation, which we are going to denote by an asterisk, is given by 

( )y y hf x yk k k k+
• = +1 ,  (16.12) 

But this formula favours the old value of y in computing ( )f x yk k,
 on the right-hand side. Surely 

it would be better to say 

( ) ( )[ ]y k h f x y f x yk k k k k k+
•

+ +
•= + +1 1 1 2, , /

 (16.13) 

where 
x x hk+ = +1 , since this also involves the new value yk+

•
1 in computing f on the right-

hand side? The problem of course is that yk+
•

1 is as yet unknown, so we can't use it on the right-

hand side of Equation 16.13. But we could use Euler to estimate (predict) yk+
•

1 from Equation 16.12 

and then use Equation 16.13 to correct the prediction by computing a better version of yk+
•

1, which 

we will call yk+1 . So the full procedure is: 
Repeat as many times as required: 

( )
( ) ( )[ ]

Use Euler to predict:  

Then correct  to:  

y y hf x y

y y y h f x y f x y
k k k k

k k k k k k k

+
•

+
•

+
•

+ +
•

= +

= + +

1

1 1 1 1 2

,

, , /
 

This is called a predictor-corrector method. The program Para above can easily be adapted to this 
problem. The relevant lines of code, which will generate all the entries in Table 16.1 at once, are: 

   
DO I = 1, N  PRINT "(F5.1, 3F12.0)", T, NE, NC, N0 * EXP( R * T )  
NE = NE + R * H * NE              ! straight Euler  NP = NC + R * H 
* NC              ! Predictor  NC  = NC + R * H * (NP + NC) / 2  ! 
Corrector  T = T + HEND DO 

   
NE stands for the "straight" (uncorrected) Euler solution, NP is the Euler predictor, and NC is the 
corrector. The worst error is now only 15%. This is much better than the uncorrected Euler solution, 
although there is still room for improvement. 

16.5. Runge-Kutta Methods 
   

There are a variety of algorithms, under the general name of Runge-Kutta, which can be 
used to integrate systems of ordinary differential equations. The fourth-order formula is 
given below, for reference. A derivation of this and the other Runge-Kutta formulae can be 
found in most books on numerical analysis. 

Runge-Kutta fourth-order formulae 
   

The general first-order differential equation is 
dy/dx = f(x, y),     y(0) given (16.14) 
The fourth-order Runge-Kutta estimate y * at x+h is given by 

( )y y k k k k• = + + + +1 2 3 42 2 6/  
where 
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Systems of differential equations: a predator-prey model 
   

The Runge-Kutta formulae may be adapted to integrate systems of first-order differential 
equations. Here we adapt the fourth-order formulae to integrate the well-known Lotka-
Volterra predator-prey model: 
dx/dt = px - qxy (16.15) 
dy/dt = rxy - sy, (16.16) 
where x(t) and y(t) are the prey and predator population sizes at time t, and p, q, r and s 
are biologically determined  parameters. We define f(x,y) and g(x,y) as the right-hand sides 
of Equations 16.15 and 16.16 respectively. In this case, the Runge-Kutta estimates x * and 
y * at time (t+h) may be found from x and y at time t with the formulae 
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,  
It should be noted that in this example x and y are the dependent variables, and t (which 
does not appear explicitly in the equations) is the independent variable. In Equation 16.4 y 
is the dependent variable, and x is the independent variable. 

16.6. A Differential Equation Modelling Package 
   
This section implements a skeleton interactive modelling program, Driver. Its basis is a fourth-
order Runge-Kutta procedure to integrate a time-based system (of any size) of first-order differential 
equations. It consists of four program units (which can be compiled separately), only one of which 
needs to be recompiled by users: 
• a module DrGlobal with global declarations of derived types and variables; 
• an external subroutine DEqs which defines the model differential equations—in principle, this 

is the only program unit which needs to be recompiled when the user sets up or changes a 
model; 

• a module DrUtils with some basic utility subroutines, including a Runge-Kutta subroutine; 
• a main program Driver to run the package. 
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Each of these program units will be described in turn. To illustrate the package, it is set up here to 
run the predator-prey model of Section 16.5, with x(0) = 105, y(0) = 8, p = 0.4, q = 0.04, r = 0.02, 
and s = 2. 
DrGlobal contains declarations to be used by DEqs and DrUtils: 

   
MODULE DrGlobal 
! Global declarations for Driver 
 
TYPE VarType               ! type for model variables 
  Character(4) Name        ! name 
  REAL InVal               ! initial value 
  REAL Val                 ! current value 
END TYPE VarType 
 
TYPE ParType               ! type for model parameters 
  Character(4) Name        ! name 
  REAL Val                 ! value 
END TYPE ParType 
 
TYPE (ParType), ALLOCATABLE, TARGET :: Params(:)      ! parameters 
TYPE (VarType), ALLOCATABLE :: Vars (:)               ! variables 
REAL, ALLOCATABLE, TARGET :: X(:)    ! current values of variables 
REAL T, dt                 ! model time and step-length  
                           ! for Runge-Kutta 
INTEGER Itime, RunTime     ! counter, number of integrations 
INTEGER NumVars, NumParams ! number of model variables, parameters 
Character(1) Opt           ! response to main menu 
 
END MODULE DrGlobal 

   
Each element of the array Vars (of derived type VarType) represents properties of a model 
variable: name, initial value and current value. The current value is kept so that the user may run the 
model either from the initial values, or the current values. The array Params represents the model 
parameters. 
It is convenient to have a separate array X to hold the current values of the model variables. It has 
the TARGET attribute to allow aliasing in DEqs. The other variables are described in comments. 
The user defines the model differential equations in the external subroutine DEqs: 

   
SUBROUTINE DEqs( F ) 
! evaluates RHS of DEs 
  USE DrGlobal 
  IMPLICIT NONE 
  REAL, INTENT(OUT) :: F(:) 
  REAL, POINTER :: Prey, Pred, p, q, r, s 
  ! model equations are: 
  ! dx/dt = F1 = px - qxy 
  ! dy/dt = F2 = rxy - sy 
  Prey => X(1)                ! symbolic aliases ... 
  Pred => X(2)                ! ... reduce likelihood of errors 
  p => Params(1) % Val 
  q => Params(2) % Val 
  r => Params(3) % Val 
  s => Params(4) % Val 
  F(1) = p * Prey - q * Prey * Pred 
  F(2) = r * Prey * Pred - s * Pred 
END SUBROUTINE DEqs 

   
DEqs evaluates and returns the right-hand side of the ith differential equation in the ith element of 
the array F. To allow the user to use more meaningful symbolic names for parameters and variables, 
aliases are set up between the symbolic names and the system variables declared in DrGlobal. 
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This is why DEqs must access the module DrGlobal, and why the current values of the model 
variables must be held in the array X. The use of aliases makes it much easier to code large models. 
The module DrUtils must access DrGlobal, and looks as follows: 

   
MODULE DrUtils   
! Driver utility subroutines 
 
USE DrGlobal 
IMPLICIT NONE 
 
INTERFACE 
  SUBROUTINE DEqs( F )           ! defines model DEs 
    REAL F(:) 
  END SUBROUTINE DEqs 
END INTERFACE 
 
CONTAINS 
 
SUBROUTINE Headings              ! generates output headings 
  INTEGER I 
  PRINT "(3A11)", "Time", (Vars(I) % Name, I = 1, NumVars) 
  PRINT* 
  PRINT "(3F11.2)", T, X 
END SUBROUTINE Headings 
 
SUBROUTINE Initialize 
! All this info could be read from a disk file 
  NumVars = 2 
  NumParams = 4 
  ALLOCATE( Vars(NumVars), Params(NumParams), X(NumVars) ) 
  Vars(1) % Name = "Prey" 
  Vars(1) % InVal = 105 
  Vars(2) % Name = "Pred" 
  Vars(2) % InVal = 8 
  Params(1) % Val = 0.4 
  Params(2) % Val = 0.04 
  Params(3) % Val = 0.02 
  Params(4) % Val = 2.0 
  Vars % Val = 0           ! set current values to zero for safety 
  dt = 1 
  T = 0 
  RunTime = 10 
END SUBROUTINE Initialize 
 
     SUBROUTINE Run                    ! run the model 
CALL Headings 
DO Itime = 1, RunTime 
  T = T + dt 
  CALL Runge 
  PRINT "(3F11.2)", T, X 
END DO 
Vars % Val = X                  ! current values 
     END SUBROUTINE Run 
 
SUBROUTINE Runge 
! 4th order Runge-Kutta 
  REAL :: F(NumVars) 
  REAL, DIMENSION( NumVars ) :: A, B, C, D, V  ! working space 
  REAL h 
  A = 0; B = 0; C = 0; D = 0  ! initialize 
  V = X                       ! initialize for Runge-Kutta 
 



 241

  CALL DEqs( F ) 
  A = dt * F 
  X = V + A / 2               ! V has original X, update X 
  CALL DEqs( F ) 
  B = dt * F 
  X = V + B / 2 
  CALL DEqs( F ) 
  C = dt * F 
  X = V + C 
  CALL DEqs( F ) 
  D = dt * F 
  X = V + (A + 2 * B + 2 * C + D) / 6 ! finally update X for return 
END SUBROUTINE Runge 
 
SUBROUTINE TidyUp 
! close files, throw away dynamic storage, etc. 
  DEALLOCATE( Vars, Params, X ) 
END SUBROUTINE 
 
END MODULE DrUtils 

   
It has an (optional) interface block for the external subroutine DEqs. 
Headings generates headings for the output from a run, including the initial values for that run. 
Initialize allocates dynamic storage, sets up model variable and parameter names and values, 
and also initializes other global variables. Note that all this information could be read from a disk 
file (which itself could be set up by another subroutine). 
The subroutine Run actually runs the model. It generates headings, integrates the differential 
equations RunTime times by calling Runge, and finally sets the final values of the variables from 
X. Note that Vars % Val is a valid array section: the array X can therefore be assigned to it. 
Runge integrates the differential equations over one step-length dt, calling DEqs to supply their 
right-hand sides. 
TidyUp deallocates dynamic storage, and would be the place to close files, etc. 
Finally, the package is driven by the main program Driver: 

   
PROGRAM Driver 
! Runs differential equations models 
! Model DE must be defined in external subroutine DEqs 
USE DrGlobal              ! global declarations 
USE DrUtils               ! Driver subroutines 
IMPLICIT NONE 
 
CALL Initialize 
Opt = "" 
PRINT*, "Driver Sample Model" 
PRINT* 
DO WHILE (Opt /= "Q" .AND. Opt /= "q") 
  PRINT*, "C: Carry on" 
  PRINT*, "I: Initial run" 
  PRINT*, "Q: Quit" 
  PRINT* 
  READ*, Opt 
  PRINT* 
  SELECT CASE (Opt) 
  CASE ("C", "c")   
    X = Vars % Val 
    CALL Run 
  CASE ("I", "i") 
    X = Vars % InVal 
    T = 0 
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    CALL Run 
  END SELECT 
END DO 
CALL TidyUp 
 
END PROGRAM Driver 

   
Driver uses both modules, and allows two basic options at the moment: to run the model from its 
initial values (I), or to run from the current values (C). 
If an initial run is selected, X is assigned initial values, and T is set to zero, before Run is called. If a 
carry on is selected, X is assigned current values, and T is left unchanged. 
A sample run using the data in this example is as follows: 

   
Driver Sample Model 
 
 C: Carry on 
 I: Initial run 
 Q: Quit 
 
 Enter your option: 
I 
       Time       Prey       Pred 
 
       0.00     105.00       8.00 
       1.00     110.88       9.47 
       2.00     108.32      11.65 
       3.00      98.83      12.57 
       4.00      91.12      11.26 
       5.00      90.30       9.24 
       6.00      95.81       7.98 
       7.00     104.30       7.99 
       8.00     110.45       9.34 
       9.00     108.61      11.48 
      10.00      99.58      12.52 
... 

   
Depending on your enthusiasm, you could extend this skeleton a great deal. You could even write a 
procedure for setting up a new model, which asks the user for symbolic names of variables and 
parameters, and which generates the aliasing code for subsequent inclusion into DEqs. This is very 
useful for large models. 

16.7. Partial Differential Equations: a Tridiagonal System 
   

The numerical solution of partial differential equations (PDEs) is a vast subject. Space only 
permits one example, which serves two important purposes. It demonstrates a powerful 
method of solving a class of PDEs called parabolic. It also illustrates a method of solving 
tridiagonal systems of linear equations. 

Heat conduction 
   
The conduction of heat along a thin uniform rod may be modelled by the partial differential equation 

∂
∂

∂
∂

U
t

U
x

=
2

2
 (16.17) 

where U(x, t) is the temperature distribution a distance x from one end of the rod at time t. It is 
assumed that no heat is lost from the rod along its length. 
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Half the battle in solving PDEs is mastering the notation. We set up a rectangular grid, with step-
lengths of h and k in the x and t directions respectively. A general point on the grid has co-ordinates 
x ih y jki j= =,

. A concise notation for U(x,t) at 
x yi j,

 is then simply 
Ui j, . 

Now 
Ui j,  is of course the exact solution of the PDE. Exact solutions can only be found in a few 

special cases; we want a general method for finding approximate solutions. This is done by using 

truncated Taylor series to replace the PDE by a finite difference scheme. We define 
ui j,  as the 

solution of the finite difference scheme at the grid point 
x yi j,

. We now attempt to find numerical 

solutions for 
ui j, , which will therefore be our approximation to the exact solution 

Ui j, . 
The left-hand side of Equation 16.17 is usually approximated by a forward difference: 
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One way of approximating the right-hand side of Equation 16.17 is as follows: 
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 (16.18) 
This leads to a scheme, which although easy to compute, is only conditionally stable. 
If however we replace the right-hand side of the scheme in Equation 16.18 by the mean of the finite 
difference approximation on the jth and (j+1)th time rows, we get the following scheme for Equation 
16.17: 

( ) ( )− + + − = + − +− + + + + − +ru r u ru ru r u rui j ij i j i j ij i j1 1 1 1 1 1 12 2 2 2  (16.19) 

where r k h= / 2
. This is known as the Crank-Nicolson implicit method, since it involves the 

solution of a system of simultaneous equations, as we shall see. 
To illustrate the method numerically, let's suppose that the rod has a length of 1 unit, and that its 
ends are in contact with blocks of ice, i.e. the boundary conditions are U(0, t) = U(1, t) = 0. Suppose 
also that the initial temperature is given by the initial condition 
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This situation could come about by heating the centre of the rod for a long time, with the ends kept 
in contact with the ice, removing the heat source at time t = 0. This particular problem has symmetry 
about the line x = 1/2; we exploit this fact in finding the solution. 
If we take h = 0.1 and k = 0.01, we will have r = 1, and   Equation 16.19 becomes 
− + − = +− + + + + − +u u u u ui j i j i j i j i j1 1 1 1 1 1 14, , , , ,  

Putting j = 0 then generates the following set of equations for the unknowns u i ,1 up to the midpoint 
of the rod, represented by i = 5, i.e. x = ih = 0.5. Exact and approximate solutions coincide on the 
boundaries and at time t = 0. The subscript j = 1 has been dropped for clarity: 
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Symmetry then allows us to replace u6 in the last equation by u 4 . This system can be written in 
matrix form as 

4 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 2 4
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   (16.20) 
The matrix (A) on the left of Equation 16.20 is known as a tridiagonal matrix. Such a matrix can be 
represented by three one-dimensional arrays: one for each diagonal. The system can then be solved 
very efficiently by Gauss elimination. This will not be explained here, but simply presented in a 
working program. 
Care needs to be taken with the matrix representation. The following form is often chosen: 

A

b c
a b c

a b c

a b c
a b

n n n

n n

=



























− − −

1 1

2 2 2

3 3 3

1 1 1

"

 
Noting how the subscripts run, we will have to dimension as follows: A(2:N), B(N), C(1:N-1). 
The following program implements the Crank-Nicolson method to solve this particular problem over 
10 time steps of k = 0.01. The step-length h is specified by N: h = 1/(2N) because of  the symmetry. 
r is therefore not restricted to the value 1, although it takes this value in the program. 

   
PROGRAM CrankNicolson 
IMPLICIT NONE 
INTEGER, PARAMETER :: N = 5 
REAL A(2:N), B(N), C(1:N-1), U(0:N+1), G(N), UX(N) 
INTEGER I, J 
REAL H, K, R, T 
 
K = 0.01 
H = 1.0 / (2 * N)       ! symmetry assumed 
R = K / H ** 2 
! set up A, B, C 
A = -R 
A(N) = - 2 * R          ! symmetry 
B = 2 + 2 * R 
C = -R 
 
DO I = 0, N             ! initial conditions 
  U(I) = 2 * I * H       
END DO 
U(N+1) = U(N-1)         ! symmetry 
 
T = 0 
PRINT "(A6, 10F8.4)", "X =", (I * H, I = 1, N) 
PRINT*, " T" 
PRINT "(F6.2, 10F8.4)", T, U(1:N) 
 
DO J = 1, 10 
  T = T + 0.01 
  G = R * (U(0:N-1) + U(2:N+1)) + (2 - 2 * R) * U(1:N) ! general R    
  CALL TriDiag( A, B, C, UX, G ) 
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  PRINT "(F6.2, 10F8.4)", T, UX 
  U(1:N) = UX 
  U(N+1) = U(N-1)              ! symmetry 
END DO 
CONTAINS 
 
SUBROUTINE TriDiag( A, B, C, X, G ) 
! Solves the tridiagonal system Ax = g by Gauss elimination 
  IMPLICIT NONE 
  REAL B(:)                  ! main diagonal  
  REAL A(2:)                 ! lower diagonal 
  REAL C(:)                  ! upper diagonal 
  REAL, INTENT(OUT) :: X(:)  ! unknown 
  REAL G(:)                  ! RHS 
  REAL W( SIZE(B) )          ! working space 
  REAL T 
  INTEGER I, J, N 
 
  N = SIZE(B) 
  W = B 
  DO I = 2, N 
    T = A(I) / W(I-1) 
    W(I) = W(I) - C(I-1) * T 
    G(I) = G(I) - G(I-1) * T 
  END DO 
  ! back substitution 
  X(N) = G(N) / W(N) 
  DO I = 1, N-1 
    J = N-I 
    X(J) = (G(J) - C(J) * X(J+1)) / W(J)   
  END DO 
END SUBROUTINE TriDiag 
 
END PROGRAM CrankNicolson 

   
Output: 

   
   X =  0.1000  0.2000  0.3000  0.4000  0.5000 
  T                                            
  0.00  0.2000  0.4000  0.6000  0.8000  1.0000 
  0.01  0.1988  0.3955  0.5834  0.7381  0.7690 
  0.02  0.1936  0.3789  0.5396  0.6460  0.6920 
  ... 
  0.10  0.0948  0.1803  0.2482  0.2918  0.3068 

   
Note the use of array sections in the main program. 
Note also that the subroutine TriDiag can be used to solve any tridiagonal system, and could be 
made part of a general utility module. 

Chapter 16 Summary 
   
• A numerical method is an approximate computer method for solving a mathematical problem 

which often has no analytical solution. 
• A numerical method is subject to two distinct types of error: rounding error in the computer 

solution, and truncation error, where an infinite mathematical process, like taking a limit, is 
approximated by a finite process. 

• An external or module procedure may be passed as an argument of a procedure. An interface 
block is recommended. 
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Chapter 16 Exercises 
   

16.1   Use Newton's method in a program to solve some of the following (you may have to 
experiment a bit with the starting value): 

(a)x x4 10− =  (to real and two complex roots) 

(b)e xx− = sin  (infinitely many roots) 

(c)x x x3 28 17 10 0− + − =  (three real roots) 

(d)log cosx x=  

(e)x x x x4 3 25 12 76 79 0− − + − =  (two real roots near 2; find the complex roots as well.) 

16.2   Use the Bisection method to find the square root of 2, taking 1 and 2 as initial values of xL 

and xR . Continue bisecting until the maximum error is less than 0.05. Use Inequality 16.2 to 
determine how many bisections are needed. 

16.3   Use the Trapezoidal to evaluate 
x dx2

0

4

∫  using a step-length of h = 1. 
16.4   A human population of 1000 at time t = 0 grows at a rate given by  

  dN dt aN/ ,=  
where a = 0.025 per person per year. Use Euler's method to project the population over the next 30 
years, working in steps of (a) h = 2 years, (b) h = 1 year and (c) h = 0.5 years. Compare your 
answers with the exact mathematical solution. 
16.5   The basic equation for modelling radio-active decay is  

  dx dt rx/ ,= −  
where x is the amount of the radio-active substance at time t, and r is the decay rate. 
Some radio-active substances decay into other radio-active substances, which in turn also decay. For 

example, Strontium 92 (r1  = 0.256 per hr) decays into Yttrium 92 (r2  = 0.127 per hr), which in turn 
decays into Zirconium. Write down a pair of differential equations for Strontium and Yttrium to 
describe what is happening. 

Starting at t = 0 with 5 1026x atoms of Strontium 92 and none of Yttrium, use the Runge-Kutta 
formulae to solve the equations up to t = 8 hours in steps of 1/3 hours. Also use Euler's method for 
the same problem, and compare your results. 
16.6   The impala population x(t) in the Kruger National Park in South Africa may be modelled by 
the equation  
  dx/dt = (r - bx sin at)x, 
where r, b, and a are constants. Write a program which: 
• reads values for r, b, a and the step-length h (in months); 
• reads the initial value of x and t; 
• uses Euler's method to compute the impala population; 
• prints the population at monthly intervals over a period of two years. 

   
16.7   The luminous efficiency (ratio of the energy in the visible spectrum to the total energy) of a 
black body radiator may be expressed as a percentage by the formula 

( )E x e dxx= −− − −

×

×

−

−

∫64 77 14 5 1 432 1

4 10
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5

5
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where T is the absolute temperature in degrees Kelvin, x is the wavelength in cm, and the range of 
integration is over the visible spectrum. Taking T = 3500°K, use Simpson's rule to compute E, firstly 
with 10 intervals (n = 5), and then with 20 intervals (n = 10), and compare your results. 
16.8   Van der Pol's equation is a second-order non-linear differential equation which may be 
expressed as two first-order equations as follows: 

( )
dx dt x

dx dt x x b x
1 2

2 1
2

2
2

11

/

/

=

=∈ − −
 

The solution of this equation has a stable limit cycle, which means that if you plot the phase 

trajectory of the solution (the plot of x1 against x2 ) starting at any point in the positive x x1 2−  
plane, it always moves continuously into the same closed loop. Use the Runge-Kutta method to 

solve this system numerically, with h = 0.1, x1 0 0( ) = , and x2 0 1( ) = . If you have access to 
graphics facilities, draw the phase trajectory for b = 1 and ∈ ranging between 0.01 and 1.0. 
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Appendix B Summary of Fortran 90 Statements 
 

Statements A through B 
ALLOCATABLE specifies the ALLOCATABLE attribute for an array. See REAL. 
ALLOCATE allocates dynamic storage to a pointer variable at run-time, e.g. 

   
REAL, POINTER :: P1, P2(:) 

   
   
ALLOCATE( P1, P2(100) ) 
 

   
It may also be used to allocate memory to an allocatable array: 

   
REAL, ALLOCATABLE :: X 

   
   
READ*, N 

   
   
ALLOCATE( X(N) ) 
 

   
In general: 

   
ALLOCATE( list[, STAT = st] ) 
 

   
If the STAT specifier is present, st is given the value zero after a successful allocation, and a 
positive value otherwise (in which case execution continues). If STAT is absent, execution stops 
after an unsuccessful attempt to allocate. 

ASSIGN (obsolescent and not recommended) is used in conjunction with the assigned GO TO. 
E.g. 

   
ASSIGN 5 TO N 

   
   
... 

   
   
GOTO N [(4, 5, 6)] 
 

   
will transfer control to statement 5 after the execution of the GOTO.  

BACKSPACE positions a file before the preceding record, e.g. 
   
BACKSPACE 2               ! file is connected to unit 2 

   
   
BACKSPACE( [UNIT =] u[, IOSTAT = io][, ERR = label] ) 
 

   
See READ for the meaning of the specifiers. 

BLOCK DATA (not recommended) names a BLOCK DATA program unit for the initialization of 
objects in named COMMON blocks: 

   
BLOCK DATA Rubbish 

   
   
  COMMON / NAME / X, Y, X 

   
   
  DATA X, Y, X / 1, 2, 3 / 



 249

   
   
END BLOCK DATA Rubbish 

Statements C through D 
   
CALL invokes a subroutine: 

   
CALL PLONK 

   
   
CALL PLINK( A, B, C ) 
 

   
CASE allows a selection of various options: 

   
SELECT  

   
   
CASE (Ch) 

   
   
CASE ("a":"z")                  ! CASE (low:high) 

   
   
  PRINT*, "lower case" 

   
   
CASE ("A":"Z") 

   
   
  PRINT*, "UPPER CASE" 

   
   
CASE DEFAULT 

   
   
  PRINT*, "not a char" 

   
   
END SELECT 
 

   
One of the bounds may be absent, e.g. CASE (:0) selects non-positive numbers. The full 
definition is in Chapter 6. 

CHARACTER specifies character type. The declaration has a number of forms, e.g. 
   
CHARACTER*4 Word               ! Word has length 4                        

   
   
CHARACTER (LEN = 8) Names(100) ! array of 100 names  

   
   
                               ! each of length 8      

   
   
CHARACTER (4) N, Line*80       ! N has length 4, Line has  

   
   
                               ! length 80       

   
   
CHARACTER (LEN = 20, KIND = 2) GreekWord                                  

   
   
CHARACTER (*), INTENT(IN) :: Name   ! assumed length  

   
   
                                    ! dummy argument       

   
   
CHARACTER (*), PARAMETER &  

   
   
  :: Message = "No such file" ! named constant     
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CHARACTER is the only one of the five intrinsic types to have two parameters: length and kind.  

CLOSE disconnects a file from a unit, e.g. 
   
CLOSE( 13 ) 
 

   
In general: 

   
CLOSE( [UNIT =] u[, IOSTAT = io][, ERR = label] & 

   
   
   [, STATUS = st] ) 
 

   
See OPEN for the meanings of the first three specifiers. 
st is a character expression which must have the value KEEP or DELETE. This specifies what 
happens to the file after disconnection. st defaults to KEEP, unless the file has status SCRATCH, 
in which case its only value is DELETE. 

COMMON (not recommended) allocates memory in a COMMON block of storage, which may be blank 
or named. The blocks may be accessed from different program units, using the same or different 
variable names. E.g. 

   
COMMON /JUNK/ A, B, X(5) 
 

   
in one program unit, and 

   
COMMON /JUNK/ X, Y(4), Z1, Z2 
 

   
in another, means that A and X, B and Y(1), ..., X(5) and Z2 share the same storage locations. 
As you can imagine, this can be highly dangerous. If data must be shared between program units, 
it should be declared in a module accessed by any program units needing it. 
Blank COMMON refers to the unnamed COMMON block, of which there is only one: 

   
COMMON M, G 
 

   
COMPLEX specifies complex type: 

   
COMPLEX X 

   
   
X = (0, 1)         ! sqrt(-1) 
 

   
Complex constants in list-directed input with READ* must be in parentheses. 

CONTAINS signals the presence of one or more internal or module subprograms.  
CONTINUE is a dummy statement which does nothing. Its main usage was as a labelled statement at 
the end of a DO loop: 

   
DO 10 I = 1, 100 

   
   
  ... 

   
   
   10  CONTINUE 
 

   
This is not recommended; use DO with END DO instead. 
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CYCLE (not recommended) transfers control to the END DO statement of the current DO construct. 
The next iteration (if there is one) is initiated. If you want to leave out part of a loop sometimes you 
should rewrite it. 
DATA initializes objects during compile time. This is particularly useful for arrays: 

   
REAL A(10), X(5), B, C, D 

   
   
DATA A / 10 * 1 /[,] (X(I), I = 2, 4) / 1, 2, 3 / 

   
   
DATA B, C, D / 4, 5, 6 / 
 

   
Note the optional comma separating a value list from a following object list. 

DEALLOCATE releases dynamic storage: 
   
DEALLOCATE( P1, P2 ) 
 

   
In general: 

   
DEALLOCATE( list[, STAT = st] ) 
 

   
See ALLOCATE for the analogous meaning of STAT. 

DIMENSION declares an array. It is not recommended as a separate statement. See REAL for its use 
as an attribute.  
DO repeats a block of statements a specified number of times, e.g. 

   
DO I = 1, 100        ! I incremented by 1 by default 

   
   
  ... 

   
   
END DO 
 

   
and 

   
DO K = 10, 1, -2     ! K decremented by 2 

   
   
  ... 

   
   
END DO 

   
   

 
   
   
DO may also be used with a conditional EXIT, e.g. 

   
   
DO 

   
   
  IF (ABS( F(X) ) < 1E-6) EXIT 

   
   
  ... 

   
   
END DO 
 

   



 252 

DO parameters should be integers. The use of real parameters is obsolescent and not 
recommended. 
The full definition of DO is in Chapter 7. 

DO WHILE repeats a block of statements conditionally: 
   
DO WHILE (ABS( F(X) ) >= 1E-6) 

   
   
  ... 

   
   
END DO 
 

   
Metcalf and Reid warn that DO WHILE may be inefficient when execution time is a critical 
factor. Since most examples in this book do not fall in this category, I have used it in preference 
to DO with EXIT. It makes the logic much clearer. 

DOUBLE PRECISION (not recommended) specifies a real variable with a precision higher than 
the default: 

   
DOUBLE PRECISION X 
 

   
It is the Fortran 77 user's cop out for not learning about kind type parameters, which are 
discussed fully in Chapter 3.  

Statements E through F 
   
END is the final statement in a program unit or subprogram. 
ENDFILE writes an endfile record to a sequential file. In general: 

   
ENDFILE( [UNIT =] u[, IOSTAT = io][, ERR = label] ) 
 

   
The specifiers have the same meaning as in OPEN. 

ENTRY (not recommended) allows a subprogram to be entered at points other than at the 
beginning, and therefore defeats the purpose of writing subprograms as logical units: 

   
SUBROUTINE JUNK( dummy-arglist )  

   
   
  ... 

   
   
  ENTRY SILLY( dummy-arglist ) 

   
   
  ... 

   
   
  ENTRY WORSE( dummy-arglist ) 

   
   
  ... 

   
   
END SUBROUTINE 
 

   
You can then call JUNK, SILLY or even WORSE, depending on exactly where you would like to 
start!  

EQUIVALENCE (not recommended) enables two or more objects in the same program unit to share 
the same storage area. E.g. 
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EQUIVALENCE (A, B), (X, Y) 
 

   
allows A and B on the one hand, and X and Y on the other, to share the same storage area. Since 
array elements occupy consecutive storage locations, you can get some really weird results. E.g. 

   
INTEGER A(2), B(3), X(2,2) 

   
   
EQUIVALENCE (A(2), B(1), X(1,2)) 
 

   
implements the following arrangement (elements in the same column share storage):  

 
 A(1) A(2)   
  B(1) B(2) B(3) 
X(1,1) X(2,1) X(1,2) X(2,2)  

If you want to use different names for the same object, set up an alias with a pointer. 
EXIT (conditionally recommended) allows exit from a DO construct (see example under DO). You 
should exit from as close to the top or bottom of a DO as possible in order to make the exit condition 
easy to see. Multiple exits are definitely not recommended. 
EXTERNAL specifies each name listed as the name of an external or dummy procedure. The 
interface remains implicit. If an explicit interface is needed, use an INTERFACE block; this is 
generally recommended. E.g. 

   
EXTERNAL F 
 

   
FORMAT provides an I/O format specification. It is described fully in Chapter 10. See PRINT for 
examples. 
FUNCTION names a function subprogram: 

   
FUNCTION Factorial( N ) 
  ... 
END FUNCTION Factorial 
 

   
In the case of a recursive function the form is, e.g. 

   
RECURSIVE FUNCTION Factorial( N ) RESULT (Fact) 
 

   
The type can be specified in the FUNCTION statement, as in 

   
INTEGER FUNCTION Factorial( N ) 

Statements G through H 
   
GOTO (not recommended) transfers control unconditionally to a labelled statment:  

   
GOTO 70 
 

   
There are two other forms of GOTO: assigned GOTO (see ASSIGN) and computed GOTO. The 
computed GOTO looks like this: 

   
GOTO ( 20, 50, 10, 40 ) N 
 

   
Control passes to the statement with the Nth label in the list, e.g. to the statement labelled 10 if N 
evaluates to 3. 



 254 

Statements I through K 
   
IF transfers control conditionally. There are three distinct forms. 
• The "logical" IF statement is used when a single statement is to be executed under a certain 

condition: 
   

IF (A /= 0) X = B / (2 * A)out  
   
   

 
   
• The IF construct is used when blocks of statements are to be executed under certain conditions: 

   
IF (Num > 0) THEN 

   
   

  PRINT*, "positive" 
   
   

ELSE IF (Num == 0) THEN 
   
   

  PRINT*, "zero" 
   
   

ELSE 
   
   

  PRINT*, "negative" 
   
   

END IF 
   
   

 
   
• The "arithmetic" IF is a  

   
dangerous statement, since its use tends to be coupled with the occurrence of numerous GOTO 
statements---A. Balfour and D.H. Marwick, Programming in Standard FORTRAN 77 (Heinemann, 
London, 1979, p. 291) 
It is obsolescent and not recommended. E.g. 

   
IF (B**2 - 4*A*C) 10, 20, 30 

   
   

 
   
Control passes to statements 10, 20, or 30 according as B**2 - 4*A*C is negative, zero, or 
positive. 
IMPLICIT (not recommended) declares variables of a specified type according to their initial 
letter. E.g. 

   
IMPLICIT INTEGER (A, X-Z) 
 

   
specifies integer type for all variables starting with the letters A, X, Y and Z. It is better to specify 
the type of each variable separately in a type declaration statement. 

IMPLICIT NONE suspends the implicit type rule, whereby all variables with the initial letter I to 
N inclusive are specified as integers, with all others real. This statement should appear in every 
program unit to force you to declare all objects specifically. 
INCLUDE (not recommended) enables text from another file to be included in the source file 
during compilation. It is not technically a Fortran statement, and has the form  

   
INCLUDE "filename" 
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INQUIRE ascertains the status and attributes of a file. It has three forms: inquire by I/O list, inquire 
by file and inquire by unit.  
Inquire by I/O list returns the length of an unformatted output record by means of the IOLENGTH 
specifier, e.g. 

   
INQUIRE( IOLENGTH = reclen ) Student 
 

   
reclen can then be used to give the record length with the RECL specifier of an OPEN 
statement. 
The other two forms are 

   
INQUIRE( FILE = filename, spec-list )     ! by file 

   
   
INQUIRE( [UNIT =] u, spec-list )          ! by unit 
 

   
where filename and u are character and integer expressions respectively.spec-list is a list 
of optional specifiers. Their names, and values returned, are (char means character): 

   
EXIST (logical): TRUE if it exists, FALSE otherwise. 
OPENED (logical): TRUE if connected, FALSE otherwise. 
NUMBER (integer): value of unit number connected, or -1 if no unit 
is connected. 
NAMED (logical): TRUE if file has a name, FALSE otherwise. 
NAME (char): returns name if file has a name. 
ACCESS (char): SEQUENTIAL, DIRECT, or UNDEFINED (if there is no 
connection). 
SEQUENTIAL and DIRECT (char): YES, NO or UNKNOWN, depending on 
allowed mode of access. 
FORM (char): FORMATTED, UNFORMATTED, or UNDEFINED.  
RECL (integer): maximum record length allowed. 
NEXTREC (integer): number of most recent record read or written. 
BLANK (char): NULL or ZERO depending on whether blanks in numeric 
fields are interpreted by default as null fields or zeros. 
POSITION (char): REWIND, APPEND, ASIS or UNDEFINED—see OPEN. 
ACTION (char): READ, WRITE, READWRITE or UNDEFINED. 
READ, WRITE and READWRITE (char): YES, NO or UNKNOWN. 
DELIM (char): APOSTROPHE, QUOTE, NONE or UNKNOWN—see OPEN. 
PAD (char): YES or NO—see OPEN. 
 E.g. 

   
   
LOGICAL connected 

   
   
CHARACTER(10) acc 

   
   
INTEGER nrec 

   
   
INQUIRE( 1, OPENED = connected, ACCESS = acc, NEXTREC = nrec ) 
 

   
INTEGER declares objects with integer type, e.g. 

   
INTEGER N, X 

   
   
INTEGER List(0:100) 
 

   
See REAL for attributes which may be specified. 
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INTENT specifies the intent attribute for a dummy argument. See REAL. 
INTERFACE specifies an explicit interface for an external subprogram, e.g. 

   
INTERFACE 

   
   
  FUNCTION F(X) 

   
   
    REAL F 

   
   
    REAL, INTENT(IN) :: X 

   
   
  END FUNCTION F 

   
   
END INTERFACE 
 

   
Interface blocks can also overload procedures with a generic name: 

   
INTERFACE SuperFung 

   
   
  MODULE PROCEDURE IntFung, RealFung   ! defined in module 

   
   
END INTERFACE 
 

   
Procedures may be overloaded with an operator, e.g. 

   
INTERFACE OPERATOR(*) 

   
   
  FUNCTION MyMult( A, B )          ! must be a function 

   
   
    TYPE (MyType) MyMult 

   
   
    TYPE (AnotherType), INTENT(IN) :: A, B 

   
   
  END FUNCTION MyMult 

   
   
END INTERFACE 
 

   
and also with the assignment operator: 

   
INTERFACE ASSIGNMENT(=) 

   
   
  SUBROUTINE MyAss( Left, Right ) 

   
   
    TYPE (MyType), INTENT(IN) :: Left 

   
   
    TYPE (AnotherType), INTENT(IN) :: Right 

   
   
  END SUBROUTINE 

   
   
END INTERFACE 
 

   
INTRINSIC specifies that a name listed is that of an intrinsic procedure. The statement is normally 
optional, but makes it clear to the reader (who may be unfamiliar with the plethora of new intrinsic 
procedures available under Fortran 90) which procedures are intrinsic and which are not. 
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An intrinsic procedure which is passed as an argument must be specified in an INTRINSIC 
statement.  

Statements L through N 
   
LOGICAL declares logical type: 

   
LOGICAL Switch 

   
   
LOGICAL TruthTable(4,4)      ! array of logical elements 
 

   
See REAL for attributes which may be specified. 

MODULE defines a module: 
   
MODULE Clobber 

   
   
  ... 

   
   
END MODULE Clobber 
 

   
NAMELIST is an obscure feature which enables you to specify in the input stream which items in a 
NAMELIST group are to be read. E.g. 

   
INTEGER A, B, C 

   
   
NAMELIST /MyLot/ A, B, C 

   
   
READ( *, [NML =] MyLot ) 

   
   

 
   

Input stream: 
   
MyLot A = 3 C = 39 
 

   
(a value for B has been omitted). See Chapter 10 for another example. 

NULLIFY gives a pointer variable disassociated status, which may be tested for by the 
ASSOCIATED intrinsic function, e.g. 

   
NULLIFY( P1 ) 
 

   
 

 

Statements O through P 
   
OPEN connects an external file to a unit. The file can be created first if necessary. It can also change 
some properties of a connection. The general form is 

   
OPEN( [UNIT =] u, spec-list ) 
 

   
where u is the unit number. The specifiers in spec-list are (char means character): 
IOSTAT (integer): returns zero if the statement successfully executes, and a positive value 
otherwise. 
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ERR (integer constant): label of statement to which control passes if an error occurs. 
 FILE (char): provides file name; if this specifier is omitted, the STATUS specifier must be set to 
SCRATCH, and the file is deleted when the connection is closed. 
STATUS (char): OLD (file must already exist), NEW (file must not exist, but is created), 
REPLACE (if file does not exist it is created, if it does exist it is deleted and a new one created), 
SCRATCH (file is created, and deleted when connection is closed), UNKNOWN. 
ACCESS (char): SEQUENTIAL (default), DIRECT.  
FORM (char): FORMATTED (default for sequential access), UNFORMATTED (default for direct 
access). 
RECL (positive integer): record length for direct access (obligatory), maximum record length for 
sequential access (optional); for formatted files length is number of characters in record, for 
unformatted files length is system dependent but may be found with INQUIRE. 
BLANK (char): NULL (default), ZERO; sets default for interpretation of blanks as nulls or zeros; 
formatted records  only. 
POSITION (char): ASIS (default—file is opened at previous position), REWIND (opened at 
initial position), APPEND (opened ahead of endfile record); sequential access only. 
ACTION (char): READ (read only), WRITE (write only), READWRITE (both); default is system 
dependent. 
DELIM (char): APOSTROPHE, QUOTE, NONE (default); indicates delimiter character used for 
character constants with list-directed or NAMELIST formatting. 
PAD (char): YES (default—formatted input record regarded as padded with blanks if input list 
and associated format specify more data than appear in record), NO. 
E.g. 

   
OPEN (2, FILE = "Students", ACCESS = "DIRECT", & 

   
   
       STATUS = "OLD", RECL = 40) 

   
   

 
   
OPTIONAL specifies the OPTIONAL  attribute for dummy arguments. See REAL.  
PARAMETER specifies the PARAMETER  attribute to name a constant.  See REAL. 
PAUSE (obsolescent and not recommended) suspends execution pending external intervention. 
POINTER specifies the POINTER attribute, e.g. 

   
REAL, POINTER :: P 

   
   
REAL, TARGET :: R 

   
   
... 

   
   
P => R            ! P is an alias for its target R 

   
   

 
   

It may also be used to allocate dynamic storage: 
   
REAL, POINTER :: X(:) 

   
   
... 
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ALLOCATE( X(N) ) 
 

   
PRINT sends output to the standard output unit. Output may be formatted or list-directed: 

   
PRINT*, "The answer is:", X + Y            ! list-directed 

   
   
PRINT "(A, F5.2)"”, "The anser is:", X 

   
   
PRINT 10, "The anser is:", X               ! labelled format 

   
   
10  FORMAT( A, F5.2 ) 

   
   
PRINT*, ((A(I,J), J = 1, N), I = 1, N)     ! implied DO 
 

   
PRIVATE specifies the PRIVATE attribute for some or all of the entities in a module, and for 
components of derived types. See REAL and TYPE.  
PROGRAM optionally names a program: 

   
[PROGRAM MyOne] 

   
   
  ... 

   
   
END [PROGRAM [MyOne]]    ! name can't appear without PROGRAM 
 

   
PUBLIC specifies the PUBLIC attribute for module entities. See REAL. 

Statements R through S 
   
READ transfers data from an input device. It has a number of forms, e.g. 

   
READ*, A, B, C            ! list-directed from standard input 
device 

   
   
READ (*, *) A, B, C       ! list-directed from standard input 
device 

   
   
READ (5, *) A, B, C       ! list-directed from unit 5 

   
   
READ (1, 15) A, B, C      ! from unit 1, format labelled 15 

   
   
15 FORMAT( 3F6.2) 

   
   
READ( *, “(3F6.2)” ) A, B, C ! from standard input device 

   
   
READ (1) A, B, C          ! from unit 1, unformatted 

   
   

 
   
   
The general form is: 

   
   
READ ([UNIT =] u, [FMT =] fmt [,spec-list] ) [list] 
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The specifiers may be in any order, subject to the following conditions: if the UNIT keyword is 
omitted, u must be first; if the FMT keyword is omitted, fmt must be second, following u 
without its keyword. 
The other specifiers are: 
IOSTAT (integer): returns a negative value if end-of-record encountered during non-advancing 
input, a different negative value if end-of-file detected, a positive value if an error is detected, or 
zero otherwise. 
END = n: control passes to statement labelled n when end-of-file detected. 
ERR = n: control passes to statement labelled n when an error is detected; labels for END and 
ERR may be the same; if END and ERR labels are not specified and an exception occurs, the 
program will crash unless IOSTAT is specified. 
REC (integer): specifies record number to be read during direct access. 
NML (name): replaces the FMT specifier; name is the name specified in a NAMELIST group. 
E.g. 

   
READ( 2, REC = 75, IOSTAT = IO ) Student 

   
   

 
   

In addition, non-advancing input may be specified with ADVANCE = "NO" (default YES). In 
this case, two additional specifiers are available: 
EOR = n: control passes to statement n when an end-of-record condition occurs. 
SIZE (integer): returns the number of characters actually read. 
The unit specifier can be an internal file, denoted by a character variable: 

   
CHARACTER (4) BUFFER 

   
   
READ (BUFFER, "(I4)" ) YEAR 

   
   

 
   

REAL declares objects with real type.  It has a  number of forms, e.g. 
   
REAL [::] A           ! colons optional 

   
   
REAL :: B = 10        ! initialization; colons obligatory 

   
   
REAL X(0:10)          ! array 
 

   
The following attributes may be specified in a type declaration: ALLOCATABLE, DIMENSION, 
EXTERNAL, INTENT, INTRINSIC, OPTIONAL, PARAMETER, POINTER, PRIVATE, 
PUBLIC, SAVE, TARGET.  
Most attributes may be specified with any of the intrinsic types (CHARACTER, COMPLEX, 
INTEGER, LOGICAL and REAL) or a derived type. 
Attributes may specified in separate statements, e.g. 

   
REAL P, Q, R, S 

   
   
POINTER P, S 

   
   
TARGET Q, R 
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A double colon must appear whenever there is an initialization expression, or an attribute is 
specified. If a constant is named with the PARAMETER attribute, there must be an initialization 
expression. Array bounds may be specified after a name, instead of with the DIMENSION 
attribute. E.g. 

   
REAL, PARAMETER :: g = 9.8                 ! named constant 

   
   
INTEGER, PARAMETER :: Max = 100 

   
   
REAL, DIMENSION(Max) :: X 

   
   
INTEGER :: N(Max) = (/ (I, I = 1, Max) /)  ! array constructor 

   
   
INTEGER, ALLOCATABLE :: Network(:,:)     

   
   
REAL, DIMENSION(10) :: A, B(5), C(4,4)  ! only A is rank 1  

   
   
                                        ! size 10 

   
   
REAL, OPTIONAL, INTENT(IN) :: Y    ! optional dummy argument 

   
   
REAL, INTENT(INOUT) :: M           ! dummy only 
 

   
Certain (fairly obvious) combinations of attributes are not allowed, e.g. POINTER on the one 
hand and TARGET, orINTENT on the other; TARGET and PARAMETER; POINTER and 
ALLOCATABLE. 
A kind parameter may be specified for any type: 

RECURSIVE specifies a recursive procedure. See FUNCTION. 
RETURN returns control from a subprogram at a point other than its END statement. This can lead to 
unstructured design, and should be avoided if possible. There is another form of RETURN called the 
"alternate" RETURN, which is obsolescent and not recommended, because it allows returns to 
alternate points in the calling program:... 

   
CALL GUNGE( A, B, C, *10, *30 ) 

   
   
... 

   
   
CONTAINS 

   
   
  SUBROUTINE GUNGE( X, Y, Z, *, * ) 

   
   
  ... 

   
   
  RETURN 1 

   
   
  ... 

   
   
  RETURN 2 

   
   
  ... 

   
   
  END SUBROUTINE GUNGE 

   
   
END 
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If the integer expression in the RETURN statement is less than 1 or greater than the number of 
asterisks in the dummy argument list, a "normal" return is executed (i.e. to the point of call). 
Otherwise, if it has the value i, control passes to the statement in the calling program whose label 
is the actual argument corresponding to the ith dummy asterisk. So RETURN 1 effects a return to 
statement 10, while RETURN 2 returns to statement 30.  

REWIND repositions a sequential file at its initial point. The syntax is the same as for backspace, e.g. 
   
REWIND 3 

   
   
REWIND( 2, IOSTAT = IO ) 
 

   
SAVE specifies the SAVE attribute for local variables declared in subprograms, i.e. such variables 
retain their current values between calls. See REAL. 
All variables which have been initialized acquire the SAVE attribute automatically. 

SELECT CASE   See CASE. 
SEQUENCE (not recommended) specifies the SEQUENCE attribute for derived types. Two type 
definitions in different scoping units define the same data type if they have the same name and 
components, and if both have the SEQUENCE attribute (giving them what is called storage 
association). It is better to have a single definition in a module accessible to both scoping units. 
STOP (not recommended) stops program execution. This is needed by people who want to stop 
their programs at places other than at the END. 
SUBROUTINE names a subroutine: 

   
[RECURSIVE] SUBROUTINE NAME( A, B, C, \ldots ) 

   
   
  ... 

   
   
END SUBROUTINE NAME 

   
   

 
   
   
If there are no arguments, the name is written without parentheses: 

   
   
SUBROUTINE NONE 

Statements T through Z 
   
TARGET specifies the TARGET attribute for an object which is the target of a pointer: 

   
REAL, TARGET :: R 

   
   
REAL, POINTER :: P1 

   
   
... 

   
   
P1 => R 
 

   
See also REAL. 

TYPE defines a derived type, e.g. 
   
TYPE Person 
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  [PRIVATE]             ! if no access allowed to components 

   
   
  CHARACTER (20) Name 

   
   
  ... 

   
   
END TYPE Person 

   
   

 
   
   
Objects of derived type may be declared, e.g. 

   
   
TYPE (Person), DIMENSION(:), INTENT(IN) :: Town 

   
   
TYPE (Person) Me 

   
   

 
   
   
USE enables access to the entities in a module by use association:  

   
   
USE MyModule            ! only one module per USE 

   
   
USE YourModule 

   
   

 
Other possibilities are:  

   
   
 USE YourMod, MyPlonk => YourPlonk   ! MyPlonk is an alias  

   
   
                     ! ... for object YourPlonk in the module             

   
   
 USE USE YourMod, ONLY :: This, That ! access only to  

   
   
                                     ! This and That            

   
   

 
   
WHERE performs operations on selected array elements. There are two forms. 
The WHERE statement has the form 

   
REAL A(20,20) 

   
   
... 

   
   
WHERE (A > 0) A = 1   ! all elements > 0 replaced by 1 

   
   

 
   
   
The WHERE construct looks like this: 

   
   
INTEGER A(20,20) 

   
   
... 

   
   
WHERE (A > 0) 
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  A = 1          ! all positive elements replaced by 1 

   
   
[ELSEWHERE 

   
   
  A = 0]         ! all the rest replaced by 0 

   
   
END WHERE 
 

   
WRITE sends output to an output unit. In general: 

   
WRITE ([UNIT =] u, [FMT =] fmt [,spec-list]) [list] 
 

   
The specifiers are the same as for READ, except that there is obviously no END specifier. E.g. 

   
WRITE (2, "(10F5.3)") (X(I), I = 1, N) 

   
   
WRITE (1, * ) "List directed output on unit 1" 

   
   
WRITE (3, REC = 76) A     ! direct access write to record 76  

   
   

 
   
   
Non-advancing WRITE is useful for writing prompts:  

   
   
WRITE (*, "(A)", ADVANCE = "NO") & 

   
   
  "Enter a number: " ! not list-directed/ 
 

   
There are no EOR or SIZE specifiers for non-advancing output.  
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Appendix C Intrinsic Procedures 
 

   
Intrinsic Procedures 
C.1. Elemental Numeric Functions 
C.2. Elemental Character-handling Functions 
C.3. Non-elemental Character-handling Functions 
C.4. Functions Relating to Numeric Representation 
• Numeric inquiry functions 
• Elemental functions to manipulate reals 

   
C.5. Bit Manipulation Functions 
• Inquiry function 
• Elemental functions 
• Elemental subroutine 

   
C.6. Vector and Matrix Multiplication Functions 
C.7. Array Reduction Functions 
• Optional argument DIM 
• Optional argument MASK 

   
C.8. Array Inquiry Functions 
C.9. Array Construction and Manipulation Functions 
C.10 Inquiry Functions for Any Type 
C.11. Elemental Logical Function 
C.12. Functions Relating to Kind 
C.13. Transfer Function 
C.14. Non-elemental Intrinsic Subroutines 
• Random numbers 
• Real-time clock 

   
 

 

Intrinsic Procedures 
   
It is helpful to categorize intrinsic procedures as follows, although the descriptions below are 
grouped somewhat differently, for convenience of reference: 
• Elemental procedures may be applied to scalars or arrays. When applied to arrays, the operation 

is performed on each element of the array. Arguments may be real or complex, unless otherwise 
stated, or unless the context clearly requires otherwise. Arguments must generally be of the 
same type. 

• Inquiry functions properties of their arguments. 
• Transformational functions usually have array arguments and an array result depending in some 

way on the elements of the arguments. 
• Non-elemental subroutines. 

   
Descriptions below are given with dummy arguments, so that optional arguments (indicated [thus]) 
may be passed using the dummy argument names as keywords. 
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Results are usually returned in the default kind, unless the KIND keyword is used (where 
appropriate). 
Trigonometric functions assume arguments are in radians, and return radians. 
Almost all of the procedures are functions. To highlight the few that are subroutines the keyword 
CALL has been included in the description. 

C.1. Elemental Numeric Functions 
   
Note that the arguments may be real or complex scalars or arrays, unless otherwise stated. 
ABS(A): absolute value of integer, real or complex A. 
ACOS(X): inverse cosine (arc cosine). 
AIMAG(Z): imaginary part.  
AINT(A [,KIND]): largest whole real number not exceeding its argument, e.g. AINT(3.9) 
returns 3.0. 
ANINT(A [,KIND]): nearest whole real number, e.g. ANINT(3.0) returns 4.0.  
ASIN(X): inverse sine (arc cosine). 
ATAN(X): inverse tangent (arc tangent), in the range-π/2 to π/2.  
ATAN2(Y, X): inverse tangent (arc tangent), as principal value of the argument of the complex 
number (X, Y), in the range -π to π.  
CEILING(A): smallest integer not less than A. 
CMPLX(X [,Y] [,KIND]): converts X or (X, Y) to complex type. 
CONJG(Z): conjugate of complex Z. 
COS(X): cosine. 
COSH(X): hyperbolic cosine. 
DIM(X, Y): max(X-Y, 0). 
EXP(X): exponential function. 
FLOOR(A): largest integer not exceeding its argument, e.g. FLOOR(-3.9) returns -4. 
INT(A [,KIND]): converts to integer type, truncating towards zero. 
LOG(X): LOG natural logarithm; for complex X result is the principal value. 
LOG10(X): common (base 10) logarithm. 
MAX(A1, A2 [,A3,...]: maximum of arguments. 
MIN(A1, A2 [,A3,...]: minimum of arguments. 
MOD(A, P): remainder of A modulo P, i.e. A-INT(A/P)*P. E.g. MOD(2.2, 2.0) returns 0.2. 
MODULO(A, P): A modulo P for A and P both real or both integer, i.e. A-FLOOR(A/P)*P in the 
real case, and A-FLOOR(A÷P)*P in the integer case, where ÷ represents mathematical division. 
E.g. MODULO(-10, 3) returns 2, MODULO(-2.2, 2.0) returns 1.8. 
NINT(A [,KIND]): nteger nearest to A. 
REAL(A [,KIND]): function converts to real. 
SIGN(A, B): absolute value of A times sign of B. 
SIN(A): sine. 
SINH(A): hyperbolic sine. 
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SQRT(A): square root. 
TAN(A): tangent 
TANH(A): hyperbolic tangent. 

C.2. Elemental Character-handling Functions 
   
Compilers must support the ASCII collating sequence, but may also support other collating 
sequences. 
ACHAR(I): character with ASCII code I for I in the range 0–127 (see Appendix D). 
ADJUSTL(STRING): string of same length by changing leading blanks into trailing blanks (left 
justify). 
ADJUSTR(STRING): string of same length by changing trailing blanks into leading blanks (right 
justify). 
CHAR(I [,KIND]): character in position I of the system collating sequence with given kind. 
IACHAR(C): ASCII code of character C (see Appendix D). 
ICHAR(C): position of character C in the system collating sequence. 
INDEX(STRING, SUBSTRING [BACK]): starting position of SUBSTRING as a substring of 
STRING, or zero if it does not occur. The position of the first or last substring is returned according 
as BACK is absent/FALSE or TRUE. 
LEN_TRIM(STRING): length of STRING without trailing blanks. 
LGE(STRING_A, STRING_B): TRUE if STRING_A follows STRING_B in the ASCII sequence 
or is equal to it (i.e. is "lexically" greater than or equal to it), FALSE otherwise. 
LGT(STRING_A, STRING_B): TRUE if STRING_A follows STRING_B in the ASCII 
sequence, FALSE otherwise.  
LLE(STRING_A, STRING_B):,TRUE if STRING_A precedes STRING_B in the ASCII 
sequence or is equal to it, FALSE otherwise.  
LLT(STRING_A, STRING_B): TRUE if STRING_A precedes STRING_B in the ASCII 
sequence, FALSE otherwise.  
SCAN(STRING, SET [,BACK]): position of a character of STRING that occurs in SET, or zero 
if no such character. The position of the left-most or right-most such character is returned according 
as BACK is absent/FALSE or TRUE. 
VERIFY(STRING, SET [,BACK]): zero if each character of STRING appears in SET, or the 
position of a character of STRING that is not in SET. The position of the left-most or right-most 
such character is returned according as BACK is absent/FALSE or TRUE. 

C.3. Non-elemental Character-handling Functions 
   
LEN(STRING): (inquiry function) number of characters in STRING if scalar, or in an element of 
STRING if it is an array. 
REPEAT(STRING, NCOPIES): concatenation of NCOPIES of STRING; both arguments scalar. 
TRIM(STRING): STRING (scalar) with trailing blanks removed. 

C.4. Functions Relating to Numeric Representation 
   

These functions relate to the models used to represent integers and reals internally. The 
parameters of the models may vary from processor to processor.  
An example of a model for the set of integers i represented is: 
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i wk
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q
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=
∑ 2 1

1 where wk  is 0 or 1. 
An example of the representation of reals x is: 
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
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−

=
∑0 2 1 2 2

2

 or /
where − ≤ ≤126 127e ,  for example, and f k  is 0 or 

1. 
Values for p and q could be 24 and 31, for example. A base other than 2 might also be 
used. 

Numeric inquiry functions 
   
Arguments may be scalars or arrays. The value of the argument need not be defined. 
DIGITS(X):  number of significant digits in the model for real or integer X, i.e. p or q. 
EPSILON(X):  number that is almost negligible compared with 1 in the model that includes real X, 

i.e. 21− p
. 

HUGE(X):  largest value in the model that includes real or integer X, i.e. ( )1 2 2127− − p

 for reals. 
MAXEXPONENT(X):  maximum exponent (integer) in the model that includes real X, i.e. 127. 
MINEXPONENT(X):  minimum exponent (integer) in the model that includes real X, i.e. –126. 
PRECISION(X):  decimal precision (number of decimal places) for real or complex X. 
RADIX(X): RADIX base (integer) in the model that includes real or integer X, i.e. 2. 
RANGE(X):  decimal exponent range in the model that includes integer, real or complex X. 

TINY(X):  smallest positive number in the model that includes real X, i.e. 2 127−
. 

Elemental functions to manipulate reals 
   
EXPONENT(X): EXPONENT exponent (integer) part e of the model for X. 

FRACTION(X): FRACTION fractional part of the model for X, i.e. X e2−
. 

NEAREST(X, S): NEAREST nearest different machine number in direction given by sign of real 
S. 
RRSPACING(X): RRSPACING reciprocal of relative spacing of model numbers near X, i.e. 

X e p2 2−

. 

SCALE(X, I): SCALE X I2  (real). 
SET_EXPONENT(X, I):, real whose sign and fractional part are those of X and whose exponent 

part is I, i.e. X I e2 −
. 

SPACING(X): absolute spacing of model numbers near X, i.e 2e p−
. 
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C.5. Bit Manipulation Functions 
   

These are based on an integer model like the one in Section C.4. 

Inquiry function 
   
BIT_SIZE(I):, maximum number of bits that may be held in the model for I. 

Elemental functions 
   
BTEST(I, POS): TRUE if bit POS of integer I has value 1. 
IAND(I, J): logical AND on all corresponding bits of I and J. 
IBCLR(I, POS): value of I with bit POS cleared to zero. 
IBITS(I, POS, LEN):  value equal to LEN bits of I starting at bit POS. 
IBSET(I, POS):  value of I with bit POS set to 1.  
IEOR(I, J):  logical exclusive OR on all corresponding bits of I and J. 
IOR(I, J):  logical inclusive OR on all corresponding bits of I and J. 
ISHFT(I, SHIFT):  value of I with bits shifted SHIFT places to left (right if negative) and 
zeros shifted in from other end. Since shifting all the bits of an integer one position to the left (right) 
multiplies (divides) it by 2 this provides a much faster means of multiplying (dividing) by powers of 
2. E.g. ISHFT( 2, 4 ) returns 16, and ISHFT( 2, -1 ) returns 1.  
ISHFTC(I, SHIFT [,SIZE]):  value of I with SIZE right-most bits shifted circularly 
SHIFT places to left (right if negative); if SIZE is absent all bits are shifted. 
NOT(I):  logical complement of all bits in I, i.e. all the bits of I are flipped. 

Elemental subroutine 
   
CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS):  copies the sequence of bits in 
FROM that start at position FROMPOS and has length LEN, to TO, starting at position TOPOS.  

C.6. Vector and Matrix Multiplication Functions 
DOT_PRODUCT(VECTOR_A, VECTOR_B):, scalar (dot) product for real and integer arguments. 
Both arguments must be rank-one and the same size. If the arguments are logical, ANY(VECTOR_A 
.AND. VECTOR_B) is returned. 
MATMUL(MATRIX_A, MATRIX_B):  matrix product. For numeric arguments, there are three 
possible cases (arguments have been shortened to A and B): 
• A is (n,m), B is (m,k), result is (n,k); 
• A is (m), B is (m,k), result is (k); 
• A is (n,m), B is (m), result is (n). 

   
E.g. in the first case, element (I,J) of the result is 

   
SUM(MATRIX_A(I,:) * MATRIX_B(:,J)) 

   
If the arguments are logical, SUM and * are replaced by ANY and .AND.. 

C.7. Array Reduction Functions 
   
The following seven functions all have array arguments. MASK is a logical array, e.g. an array 
expression. 
ALL(MASK):  TRUE if all elements of MASK are true, otherwise FALSE. 
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ANY(MASK):  TRUE if any elements of MASK are true. 
COUNT(MASK):  number of true elements of MASK. 
MAXVAL(ARRAY):  element with maximum value in real or integer ARRAY. If ARRAY has zero 
size, largest negative value on system is returned. 
MINVAL(ARRAY):  element with minimum value in real or integer ARRAY. If ARRAY has size 
zero, largest positive value on system is returned. 
PRODUCT(ARRAY):  product of elements of integer, real or complex array, or 1 if ARRAY has size 
zero. 
SUM(ARRAY):  sum of elements of integer, real or complex array, or  

Optional argument DIM 
   
All these functions take an optional second argument DIM. If it is present, the operation is performed 
on all rank-one sections spanning through dimension DIM, and returns an array of rank reduced by 
1. E.g.  

   
INTEGER :: A(2,3) = RESHAPE( (/ 1,2,3,4,5,6 /), (/2,3/) ) 
PRINT*, SUM(A,2) 

   
produces the output 9 12. 

Optional argument MASK 
   
MAXVAL, MINVAL, PRODUCT and SUM take MASK as a third optional argument. The operation is 
then applied to elements of ARRAY corresponding to true elements of MASK (which must obviously 
have the same shape). 
 

C.8. Array Inquiry Functions 
   
ALLOCATED(ARRAY):  TRUE if ARRAY is currently allocated. 
LBOUND(ARRAY [,DIM]):  rank-one array holding lower bounds if DIM is absent; otherwise 
lower bound in dimension DIM. 
SHAPE(SOURCE):  rank-one array holding shape of SOURCE. If SOURCE is scalar, result has size 
zero. 
SIZE(ARRAY [,DIM]):  (scalar) size of ARRAY if DIM is absent; otherwise extent along 
dimension DIM.  
UBOUND(ARRAY [,DIM]):  similar to LBOUND except that it returns upper bounds. 

 

C.9. Array Construction and Manipulation Functions 
   
Note that array elements are manipulated in array element order. 
CSHIFT(ARRAY, SHIFT [,DIM]):  returns an array of the same shape and type as ARRAY 
with every rank-one section that extends across dimension DIM shifted circularly SHIFT times. If 
DIM is omitted it has the value 1. If SHIFT is an array it must have the shape of ARRAY with 
dimension DIM omitted, and supplies a separate value for each shift. Some experiments should make 
this clear! 
EOSHIFT(ARRAY, SHIFT [,BOUNDARY] [,DIM]):  identical to CSHIFT except that 
values are shifted off at the end (end-off shift) and boundary values inserted into the vacated 
positions. If ARRAY has an intrinsic type, BOUNDARY may be omitted; values of zero, FALSE, or 
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blank are shifted in as the case may be. If BOUNDARY is present and scalar, it supplies all needed 
values; if it is an array, it must have the shape of ARRAY with dimension DIM omitted, and supplies 
a separate value for each shift. 
MAXLOC(ARRAY [,MASK]):  returns the subscripts of the largest element of ARRAY in a rank-
one array of size equal to the rank of ARRAY. The operation is restricted to elements corresponding 
to true elements of MASK if it is present. If there is more than one maximum, the first in array 
element order is taken. 
MERGE(TSOURCE, FSOURCE, MASK):  (elemental function) returns TSOURCE if MASK is 
TRUE, FSOURCE otherwise. E.g. if the three arguments are conformable arrays, the first two are 
merged under the control of MASK. 
MINLOC(ARRAY [,MASK]):  similar to MAXLOC except that the subscripts of the smallest 
element are returned. 
PACK(ARRAY, MASK [,VECTOR]):  rank-one array of elements of ARRAY according to true 
elements of MASK, if VECTOR is absent. Otherwise result has size equal to size n of VECTOR, which 
must have size at least equal to the number of selected elements t; if t < n, elements i of the result for 
i > t are the corresponding elements of VECTOR. 
RESHAPE(SOURCE, SHAPE [,PAD] [,ORDER]):  array with shape given by rank-one 
integer array SHAPE and type of SOURCE. The size of SHAPE must be constant. If PAD and ORDER 
are absent, the elements of the result are the elements of SOURCE (in array element order). If PAD is 
present, it must be an array of the same type as SOURCE; copies of PAD are inserted into the result 
after SOURCE. ORDER must be an integer array with the same shape as SHAPE. Its value must be a 
permutation of (1, 2, ..., n). It appears to control the way in which SOURCE and PAD are combined. 
SPREAD(SOURCE, DIM, NCOPIES):  makes NCOPIES duplicates of SOURCE by increasing 
its rank by 1. DIM is the dimension of the result along which duplication takes place. See Chapter 15 
for a program which generates examples. 
TRANSPOSE(MATRIX):  transpose of rank-two array MATRIX. 
UNPACK(VECTOR, MASK, FIELD):  array of type of VECTOR and shape of MASK. VECTOR 
must be rank-one array of size at least the number of true elements of MASK.  The element of the 
result corresponding to the ith true element of MASK is the ith element of VECTOR; all others are 
equal to corresponding elements of FIELD if it is an array (with the same shape as MASK), or to 
FIELD if it is a scalar. 

C.10. Inquiry Functions for Any Type 
   
ASSOCIATED(POINTER [,TARGET]):  If TARGET is absent, result is TRUE if POINTER is 
associated with a target, FALSE otherwise. The status of POINTER must not be undefined. If 
TARGET is present, result is TRUE if POINTER is associated with it. If TARGET itself is a pointer, 
its target is compared with the target of POINTER, and FALSE is returned if either POINTER or 
TARGET is disassociated.  
PRESENT(A):  TRUE if the actual argument corresponding to the dummy argument A is present in 
the current call to a subprogram. 

   
ASSOCIATED(POINTER [,TARGET]):  If TARGET is absent, result is TRUE if POINTER is 
associated with a target, FALSE otherwise. The status of POINTER must not be undefined. If 
TARGET is present, result is TRUE if POINTER is associated with it. If TARGET itself is a pointer, 
its target is compared with the target of POINTER, and FALSE is returned if either POINTER or 
TARGET is disassociated.  
PRESENT(A):  TRUE if the actual argument corresponding to the dummy argument A is present in 
the current call to a subprogram. 

C.11. Elemental Logical Function 
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LOGICAL(L [,KIND]):  function converts between kinds of logical value. Returns the value of 
logical L (with a kind parameter value of KIND, if it is present). If KIND is present, it must be a 
scalar initialization expression.  

C.12. Functions Relating to Kind 
   
KIND(X):  kind parameter value of X. 
SELECTED_INT_KIND(R):  kind parameter value for an integer data type able to represent all 

integer values n in the range 
− < <10 10R Rn

, where R is a scalar integer. –1 is returned if no 
such kind is available.  
SELECTED_REAL_KIND([P] [,R]):  kind parameter for a real data type with decimal 
precision at least P, and decimal exponent range at least R (as returned by PRECISION and 
RANGE). At least one of the scalar integers P and R must be present. –1 is returned if the precision is 
unavailable, – if the range is unavailable, and – if neither are available. 

C.13. Transfer Function 
   
TRANSFER(SOURCE, MOLD [,SIZE]: same physical representation as SOURCE, but type of 
MOLD. Scalar if MOLD is scalar, otherwise of rank one and size just sufficient to hold all of SOURCE. 
If SIZE is present, result is of rank one and size SIZE. 

C.14. Non-elemental Intrinsic Subroutines 
   

See Random numbers and Real-time clock. 

Random numbers 
   
Pseudo-random numbers are generated from a seed held as a rank-one integer array.  
RANDOM_NUMBER returns the random numbers, and RANDOM_SEED allows inquiries about the 
seed array, and the seed to be reset.  
CALL RANDOM_NUMBER(HARVEST):  random number x uniformly distributed in the range 
0 1≤ <x , or an array of such numbers, in HARVEST, which has intent OUT and must be real.  
CALL RANDOM_SEED([SIZE] [,PUT] [,GET]) : 
• SIZE (scalar integer) has intent OUT and is set by the system to the size N of the seed array; 
• PUT (rank-one integer array size N) has intent IN and is used by the system to reset the seed;  
• GET (rank-one integer array size N) has intent OUT and is set by the system to the current value 

of the seed. 
   
Not more than one argument may be specified; if none is specified, the seed is set to a system-
dependent value. See Chapter 14 for examples. 

Real-time clock 
   
CALL DATE_AND_TIME([DATE] [,TIME] [,ZONE] [,VALUES]):  returns (values are 
blank or -HUGE(0) if there is no clock)  
• DATE (character) as ccyymmdd (century—day); 
• TIME (character) as hhmmss.sss (hours—milliseconds); 
• ZONE (character) as Shhmm (difference between local and Co-ordinated Universal Time—

UTC —S is the sign); 
• VALUES (rank-one integer array) holding the year, month, day, time difference in minutes with 

respect to UTC, hour, minutes, seconds, and milliseconds. 
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CALL SYSTEM_CLOCK([COUNT] [,COUNT_RATE] [,COUNT_MAX]):  returns 
• COUNT (integer) holding current value of system clock; 
• COUNT_RATE (integer) holding number of clock counts per second; 
• COUNT_MAX (integer) holding maximum value /COUNT/ may take. 

Appendix D ASCII Character Codes 
   

The ASCII (American Standard Code for Information Interchange)  collating sequence is as 
follows: 
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Appendix E Solutions to Selected Exercises 
 

   
Solutions to the exercises are listed in each Chapter topic. 

Chapter 1 
   
   
1.1    PROGRAM Arith 
       REAL A, B 
       PRINT*, "Enter A and B:" 
       READ*, A, B 
       PRINT*, "Sum:       ", A + B 
       PRINT*, "Difference:", A - B 
       PRINT*, "Product:   ", A * B 
       PRINT*, "Quotient:  ", A / B 
       END PROGRAM Arith 
 
1.2    PROGRAM Energy 
       REAL C, E, V 
       READ*, C, V 
       E = C * V ** 2 / 2 
       PRINT*, "Stored energy:", E 
       END PROGRAM Energy 

Chapter 2 
   
2.2 (a)  comma should be replaced by decimal point  
      (e)  asterisk should be omitted  
      (f)  exponent must be integer  
      (h)  comma should be replaced by decimal point 
2.3 (b)  decimal point not allowed  
      (c)  first character must be a letter  
      (d)  apostrophes not allowed 
      (f)  first character must be a letter  
      (h)  blanks not allowed 
      (i)  decimal points not allowed  
      (k)  asterisk not allowed 
      (l)  allowed but not recommended! 

   
2.4     REAL, PARAMETER :: Pi = 3.1415927 
    (a) PRINT*, 2 ** (0.5)                                                  
    (b) PRINT*, (5. + 3) / (5 * 3)     ! real division             
    (c) PRINT*, (2.3 * 4.5) ** (1.0/3) ! real division in exponent 
    (d) PRINT*, (2 * Pi) ** 2                                               
    (e) PRINT*, 2 * Pi ** 2                                                 
    (f) PRINT*, 1000 * (1 + 0.15/12) ** 60                                  
 
2.5 (a) P + W / U                                                      
    (b) P + W / (U + V)                                                
    (c) (P + W / (U + V)) / (P + W / (U - V))                          
    (d) X ** (1 / 2.0)                                                 
    (e) Y ** (Y + Z)                                                   
    (f) X ** Y ** Z                                                    
    (g) (X ** Y) ** Z    ! ** goes from right to left by default  
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    (h) X - X ** 3 / (2.*3) + X ** 5 / (2.*3*4*5)                      
 
2.6    I = 2 ** 30 - 1 + 2 ** 30 
 
2.7    REAL A, B, C, X 
       READ*, A, B, C 
       X = (-B + (B ** 2 - 4 * A * C) ** (0.5)) / (2.0 * A) 
       PRINT*, X 
       END 
 
2.8    REAL G, P, L 
       PRINT*, "Enter gallons and pints:" 
       READ*, G, P 
       P = 8 * G + P 
       L = P / 1.76 
       PRINT*, L, "litres" 
       END 
 
2.9    IMPLICIT NONE 
       REAL Km, L, Km_L, L_100Km 
       Km = 528 
       L = 46.23 
       Km_L = Km / L 
       L_100Km = L / (Km / 100) 
       PRINT*, " Distance", "  Litres used", " Km/L", " L/100Km" 
       PRINT* 
       PRINT*, Km, L, Km_l, L_100Km 
       END 
 
2.10   T = A 
       A = B 
       B = T 
 
2.11   A = A - B 
       B = B + A 
       A = B - A 
 
2.13   REAL L, P, R 
       INTEGER N 
       L = 50000 
       PRINT*, "Enter N and R (as a decimal):" 
       READ*, N, R 
       P = R * L * (1 + R/12) ** (12*N) 
       P = P / 12 / ((1 + R/12) ** (12*N) - 1) 
       PRINT*, "Monthly payment:", P 
       END 
 
2.14   REAL L, N, R, P 
       PRINT*, "Capital amount, monthly payment, interest rate" 
       READ*, L, P, R 
       N = LOG( P / (P - R*L/12) ) 
       N = N / 12 / LOG( 1 + R/12 ) 
       PRINT*, "Repayment period in years/months:", N, 12 * N 
       END 
 
2.15   REAL, PARAMETER :: Pi = 3.1415927 
       REAL C, E, I, I1, L, R, Omega 
       R = 5; C = 10; L = 4; E = 2; Omega = 2 
       I1 = 2 * Pi * Omega * L - 1 / (2 * Pi * Omega * C) 
       I = E / (R ** 2 + I1 ** 2) ** 0.5 
       PRINT*, "Current:", I 
       END 
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Chapter 3 
   
   
3.1 (a) I = I + 1             
    (b) I = I ** 3 + J        
 
    (c) IF (E > F) THEN       
          G = E               
        ELSE                  
          G = F               
        END IF                
 
    (d) IF (D > 0) X = -B     
    (e) X = (A + B) / (C * D) 
 
3.2    REAL F 
       INTEGER C 
       DO C = 20, 30 
          F = 9 * C / 5 + 32 
       PRINT*, C, F 
       END DO 
 
3.3    INTEGER I 
       DO I = 10, 20 
          PRINT*, I, SQRT(1. * I)  
               ! SQRT may not have an integer argument 
       END DO 
 
3.5    INTEGER I, SUM 
       SUM = 0 
       DO I = 1, 100 
        SUM = SUM + 2 * I 
       END DO 
 
3.7    INTEGER I, N, NumPass 
       REAL Avg, Mark 
       NumPass = 0 
       Avg = 0 
       N = 10 
       OPEN( 1, FILE = "Marks"  ) 
       DO I = 1, N 
         READ (1, *) Mark 
         Avg = Avg + Mark 
         IF (Mark >= 5) NumPass = NumPass + 1 
       END DO 
       Avg = Avg / N 
       PRINT*, "Average:", Avg 
       PRINT*, NumPass, "passed" 
 
3.9,     A = 4, X = 1 + 1/2 + 1/3 + 1/4. 
 
3.10   X = 0 
       DO K = 1, 4 
         X = X + 1 / K 
       END DO   
 
3.11   The limit is pi. 
 
3.13   REAL Bal, Dep, Intr, Rate 
       INTEGER Mon 
       Bal = 0 
       Dep = 50 
       Rate = 0.01 
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       PRINT*, "Month", "   Balance" 
       DO Mon = 1, 12 
         Bal = Bal + Dep   
         Intr = Rate * Bal 
         Bal = Bal + Intr 
         PRINT*, Mon, "    ", Bal 
       END DO 
       END 
 
3.16   REAL A, B, K, P 
       INTEGER T 
       K = 197273000 
       A = 0.03134 
       B = 1913.25 
       PRINT "(A5, A20)", "Year", "USA Population" 
       DO T = 1790, 2000, 10 
         P = K / (1 + EXP( -A * (T - B) )) 
         PRINT "(I5, F20.0)", T, P 
       END DO 
       END 
 
3.18   INTEGER Feet, Yards 
       REAL Inches, Metres 
       READ*, Metres 
       Inches = 39.37 * Metres 
       Yards = Inches / 36 
       Inches = MOD( Inches, 36.0 )         ! inches left 
       Feet = Inches / 12 
       Inches = MOD( Inches, 12.0 ) 
       PRINT*, "Imperial:", Yards, Feet, Inches 
 
3.19 (a) C = SQRT(A * A + B * B)        ! * is quicker than **     
     (b) Theta = Theta * Pi / 180       ! convert to radians     
         C = SQRT(A * A + B * B - 2 * A * B * Cos(Theta))        
 
3.20 (a) Y = LOG(X + X * X + A * A)                              
     (b) Y = (EXP(3 * T) + T * T * SIN(4 * T)) * COS(3 * T) ** 2 
     (c) Pi = 4 * ATAN(1.0)                                      
     (d) Y = 1 / COS(X) ** 2 + 1 / TAN(Y)                        
     (e) Y = ATAN( ABS(A/X) )     

Chapter 4 
   
4.1  You should get a picture of tangents to a curve. 
4.2  (a),  4,, (b), 2  
      (c)  The algorithm (attributed to Euclid) finds the HCF (Highest Common Factor) of two 
numbers by using the fact that the HCF divides exactly into the difference between the two numbers, 
and that if the numbers are equal, they are equal to their HCF. 

   
4.3    REAL C, F 
       READ*, F 
       C = (F - 32) * 5.0 / 9 
       PRINT*, "Celsius:", C 
 
4.5    REAL A, B 
       READ*, A, B 
       IF (A > B) THEN 
         PRINT*, A, "is greater" 
       ELSE 
         PRINT*, B, "is greater" 
       END IF 
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4.6    REAL X, MaxX 
       INTEGER I, MaxPos 
       OPEN( 1, FILE = "MARKS" ) 
       MAxX = -HUGE(0)          ! smallest (most negative) number 
       DO I = 1, 10 
         READ (1, *) X 
         IF (X > MaxX) THEN     ! X is biggest so far 
           MaxX = X              
           MaxPos = I           ! record position 
         END IF 
       END DO 
       PRINT*, MaxX, "in position", MaxPos 
 
4.7    REAL :: Sum = 0          ! initialization 
       INTEGER N 
       DO N = 1, 100 
         Sum = Sum + 1.0 / N  ! remember integer division 
         IF (MOD( N, 10 ) == 0) PRINT*, Sum 
       END DO 
 
4.8    INTEGER Secs, Mins, Hours 
       READ*, Secs 
       Hours = Secs / 3600 
       Secs = MOD( Secs, 3600 )     ! number of seconds over 
       Mins = Secs / 60 
       Secs = MOD( Secs, 60 ) 
       PRINT*, Hours, ":", Mins, ":", Secs 

Chapter 5 
   
   
5.1    REAL A, B 
       READ*, A, B 
       IF (A > B) THEN 
         PRINT*, A, "is larger" 
       ELSE IF (B > A) THEN 
         PRINT*, B, "is larger" 
       ELSE 
         PRINT*, "number are equal" 
       END IF 

   
5.2 
 1. Repeat 10 times: 

  Read number 
  If number < 0 then 
   increase negative counter 
  otherwise if number = 0 then 
   increase zero counter 
  otherwise 
   increase positive counter 

 2. Print counters. 
   
   
       INTEGER I, Num, NPos, NZer, NNeg 
       NPos = 0; NZer = 0; NNeg = 0; 
       DO I = 1, 10 
         READ*, Num 
         SELECT CASE (Num) 
         CASE (:-1) 
           NNeg = NNeg + 1 
         CASE (0) 
           NZer = NZer + 1 
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         CASE DEFAULT 
           NPos = NPos + 1 
         END SELECT 
       END DO 
       PRINT*, NNeg, NZer, NPos 

   
5.5 
 1. Read a, b, c, d, e, f 
 2. u = ae - db, : v = ec - bf 
 3. If  u = 0 and v = 0 then 

  Lines coincide 
 Otherwise if u = 0 and v ≠ 0 then 
  Lines are parallel 
 Otherwise 
  x = v/u, : y = (af-dc)/u 
  Print x, y 

 4. Stop. 
   
   
       REAL A, B, C, D, E, F, U, V, X, Y 
       READ*, A, B, C, D, E, F 
       U = A * E - D * B 
       V = E * C - B * F 
       IF (U == 0 .AND. V == 0) THEN 
         PRINT*, "Lines coincide" 
       ELSE IF (U == 0 .AND. V /= 0) THEN 
         PRINT*, "Lines parallel" 
       ELSE 
         X = V / U 
         Y = (A * F - D * C) / U 
         PRINT*, "x, y:", X, Y 
       END IF 

Chapter 6 
   
   
6.2    INTEGER X 
       REAL Ang, Pi 
       Pi = 4 * ATAN(1.0) 
       DO X = 0, 90, 15 
         Ang = X * Pi / 180              ! convert to radians 
         PRINT "(I3, 2F7.4)", X, SIN(Ang), COS(Ang) 
       END DO 
 
6.3    REAL Bal, Rate 
       INTEGER Month, Year 
       Bal = 1000 
       Rate = 0.01 
       DO Year = 1, 10 
         DO Month = 1, 12 
           Bal = (1 + Rate) * Bal 
         END DO 
         PRINT*, Year, Bal 
       END DO 
 
6.4 (a) REAL Pi 
        INTEGER K, N, Sign                                             
        Pi = 1                                                         
        Sign = 1                                                       
        PRINT*, "Number of terms?"                                     
        READ*, N                                                       
        DO K = 1, N                                                    
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          Sign = -Sign                                                 
          Pi = Pi + Sign / (2 * K + 1.0)   
                              ! avoids integer division    
        END DO                                                                
        Pi = 4 * Pi                                                    
 
6.4 (b) REAL :: Pi = 0 
        INTEGER K, N                                                          
        PRINT*, "Number of terms?"                                            
        READ*, N                                                              
        DO K = 1, N                                                           
          Pi = Pi + 1.0 / (4 * K - 3) / (4 * K - 1)  
                              ! avoids integer division 
        END DO                                                                
        Pi = 8 * Pi                                                           
 
6.7    REAL(2) E, X           ! greatest precision 
       X = 0.1 
       DO I = 1, 20 
         E = 1.0 / (1 - X) ** (1/X) 
         PRINT*, X, E 
         X = X / 10 
       END DO 
 
6.8    REAL, PARAMETER :: Pi = 3.1415927 
       REAL Fourier, T 
       INTEGER K, N 
       PRINT*, "N:" 
       READ*, N 
       T = 0 
       DO WHILE (T <= 1 + SPACING(T))   ! make sure we hit 1.0 
         Fourier = 0 
         DO K = 0, N 
           Fourier = Fourier + SIN( (2*K+1) * Pi * T ) / (2*K+1) 
         END DO 
         Fourier = 4 * Fourier / Pi 
         PRINT*, T, Fourier 
         T = T + 0.1     
       END DO 
 
6.10   INTEGER Ans, I, NumTerms, Sum 
       Sum = 0; I = 0; 
       DO 
        IF (Sum >= 100) EXIT 
        Ans = Sum                ! since Sum will go over 100 
        NumTerms = I 
        I = I + 1 
        Sum = Sum + I 
       END DO 
       PRINT*, Ans, "after", NumTerms, "terms" 
 
6.12   INTEGER M, N 
       READ*, M, N 
       DO WHILE (M /= N) 
         DO WHILE (M > N) 
           M = M - N 
         END DO 
         DO WHILE (N > M) 
           N = N - M 
         END DO 
       END DO 
       PRINT*, "HCF is", M 
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6.14  The final payment is $157.75 in the 54th month (don't forget the  interest in the last month). 

Chapter 8 
   
   
8.2    REAL X 
       READ*, X 
       PRINT*, X, Expo(X), EXP(X) 
 
       CONTAINS 
         FUNCTION Expo( X )             
           REAL Expo, Term              
           REAL, INTENT(IN) :: X        
           INTEGER K                    
           Expo = 1                     
           K = 1                        
           Term = 1                     
           DO WHILE (ABS(Term) >= 1e-6) 
             Term = Term * X / K        
             Expo = Expo + Term           
             K = K + 1                  
           END DO                       
         END FUNCTION Expo              
       END 
 
8.5    FUNCTION Normal( X )                                    
       REAL Normal, R, T                                       
       REAL, INTENT(IN) :: X                                   
         REAL :: A = 0.4361836                                 
         REAL :: B = -0.1201676                                
         REAL :: C = 0.937298                                  
         REAL :: Pi = 3.1415927                                
         R = EXP( -X * X / 2 ) / SQRT(2 * PI)                  
         T = 1 / (1 + 0.3326 * X)                              
         Normal = 0.5 - R * (A * T + B * T * T + C * T ** 3)   
       END FUNCTION Normal                                     
 
8.6    INTEGER N 
       DO N = 1, 20 
         PRINT "(I4, F9.1)", N, Fibo(N) 
       END DO 
       CONTAINS 
         RECURSIVE FUNCTION Fibo( N ) RESULT (F) 
           REAL F 
           INTEGER N 
           IF (N == 0 .OR. N == 1) THEN 
             F = 1 
           ELSE 
             F = Fibo(N-1) + Fibo(N-2) 
           END IF 
         END FUNCTION Fibo 
       END 

Chapter 9 
   
   
9.1    INTEGER, DIMENSION(100) :: Num               
       (a)    Num = (/ (I, I = 1, 100) /)   
       (b)    DO I = 1, 50                                 
                Num(I) = 2 * I                             
              END DO                                       
       (c)    DO I = 1, 100   ! or Num = (/ (I, I = 100, 1, -1) /) 
                Num(101-I) = I                             
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              END DO                                       
 
9.2    REAL F(100), F1, F2 
       READ*, F(1), F(2) 
       DO N = 3, 100 
         F(N) = F(N-1) + F(N-2) 
       END DO 
 
9.3    REAL :: S(7) = (/ 9, 10, 12, 15, 20, 35, 50 /) 
       INTEGER :: Emps(7) = (/ 3000, 2500, 1500, 1000, 400, & 
                                                   100, 25 /) 
       INTEGER :: NumScales = 7 
       INTEGER I, Above, Below 
       REAL AvLevel, AvSal 
       Above = 0; Below = 0 
       AvLevel = SUM( S ) / NumScales          ! intrinsic SUM 
       DO I = 1, NumScales 
         IF (S(I) < AvLevel) THEN 
           Below = Below + Emps(I) 
         ELSE 
           Above = Above + Emps(I) 
         END IF 
       END DO   
       AvSal = 1000 * SUM( S ) / SUM( Emps )   ! intrinsic SUM 
 
9.4    INTEGER X(10), Num, I 
       REAL Mean, Dist 
       READ*, X 
       Mean = SUM( X ) / 10             ! intrinsic SUM 
       Dist = ABS(X(1) - Mean)          ! it may be the first one 
       Num = X(1) 
       DO I = 2, 10 
         IF (ABS(X(I) - Mean) > Dist) THEN 
           Num = X(I)                        ! furthest number 
           Dist = ABS(X(I) - Mean)           ! distance from mean 
         END IF 
       END DO 

   
9.5 

 1. Initialize: N = 3, : P1 = 2, j = 1 (prime counter) 
 2. While N < 1000 repeat: 

  i = 1 
  R = MOD( N, P1) (remainder) 

  While R ≠ 0 and P N1 <  repeat: 
   Increase i by 1 
   R = M OD ( , )N P1  
  If R ≠ 0 then 
    Increase j by 1 (that's another prime) 
    P N1 =  
  Increase N by 2 

 3. Print all the Pj 's 
 4. Stop. 

Chapter 10 
   
   
10.3   CHARACTER (1) :: ch = "" 
       INTEGER :: NonBlank = 0 
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       INTEGER :: IOEnd  = 0 
       OPEN( 1, FILE = 'TEST' ) 
       DO WHILE (IOEnd /= -1)               ! for EOF under FTN90 
         READ (1, "(A1)", IOSTAT = IOEnd, ADVANCE = "NO") ch 
         IF (ch /= ' ') NonBlank = NonBlank + 1 
       END DO 
       PRINT*, NonBlank 
       CLOSE (1) 

Chapter 11 
   
   
11.1   CHARACTER(80) Line 
       INTEGER :: Blanks = 0 
       INTEGER I 
       READ*, Line      ! use quotes if text contains blanks 
       DO I = 1, LEN_TRIM( Line ) 
         IF (Line(I:I) == " ") Blanks = Blanks + 1 
       END DO 
 
11.2   INTEGER I, PosStop 
       CHARACTER(80) Sentence 
       READ*, Sentence  ! enclose in quotes if blanks in text 
       PRINT*, Sentence 
       PosStop = INDEX( Sentence, "." ) 
       PRINT*, PosStop 
       DO I = PosStop-1, 1, -1 
         WRITE (*, "(A1)", ADVANCE = "NO") Sentence( I:I ) 
       END DO 

   
   
11.3   PROGRAM Zeller 
       CHARACTER (9), DIMENSION(0:6) :: DayOfWeek = & 
          (/ "Sunday   ", "Monday   ", "Tuesday  ", & 
             "Wednesday", "Thursday ", "Friday   ", "Saturday " /) 
       INTEGER Centy, Day, Month, Year, F 
       PRINT*, "Enter day, month, year:" 
       READ*, Day, Month, Year 
       Month = Month - 2 
       IF (Month <= 0) Month = Month + 12 
       IF (Month >= 11) Year = Year - 1 
       Centy = Year / 100 
       Year = MOD( Year, 100 )      ! year in century now 
       F = INT(2.6 * Month - 0.2) + Day + Year + Year / 4 & 
                                      + Centy / 4 - 2 * Centy 
       F = MOD( F, 7 ) 
       PRINT*, DayOfWeek(F) 
       END 

   
   
11.4   PROGRAM BinToDec 
       CHARACTER(80) StrBin        ! maximum length is 80 
       INTEGER, ALLOCATABLE :: Bin(:) 
       INTEGER Dec, I, N 
       READ*, StrBin 
       N = LEN_TRIM( StrBin )      ! number of binary digits 
       ALLOCATE( Bin(N) ) 
       READ (StrBin, "(80I1)") Bin ! reads first N digits 
       Dec = 0 
       DO I = 1, N 
         Dec = Dec + Bin(I) * 2 ** (N-I) 
       END DO 
       PRINT*, Dec 
       END 
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11.5   PROGRAM Upper 
       CHARACTER (1) :: ch 
       INTEGER :: IOEnd  = 0 
       OPEN( 1, FILE = "TEXT" ) 
       DO WHILE (IOEnd /= -1)             ! for EOF under FTN90 
         READ (1, "(A1)", IOSTAT = IOEnd, ADVANCE = "NO") ch 
         IF (ch >= "a" .AND. ch <= "z") THEN 
           ch = ACHAR( IACHAR(ch) - 32 )  ! ASCII codes 
         END IF 
         WRITE (*, "(A1)", ADVANCE = "NO") ch 
         IF (IOEnd == -2) PRINT*          ! for EOR under FTN90 
       END DO 
       CLOSE (1) 
       END 

   
   
11.12  FUNCTION TIS()                                                           
       REAL TIS                                                                 
       INTEGER TIMES(8)                                                         
         CALL DATE_AND_TIME( VALUES = TIMES )                                   
         PRINT*, TIMES                                                          
         TIS = TIMES(5) * 3600 + TIMES(6) * 60 + TIMES(7)& 
              + TIMES(8) / 1000.0   
       END FUNCTION TIS   

Chapter 13 
   
   
13.1   INTEGER, POINTER :: P1, P2, Temp 
       INTEGER, TARGET :: I, J 
       I = 1; J = 2 
       P1 => I 
       P2 => J 
       PRINT*, P1, P2 
       Temp => P1 
       P1 => P2 
       P2 => Temp 
       PRINT*, P1, P2    ! check where they point now 

   

Chapter 14 
   
   
14.1   PROGRAM Bingo 
       INTEGER Bing(99), I, Temp, Seed(1), Count, R 
       REAL Rnd 
       CALL SYSTEM_CLOCK( Count ) 
       Seed = Count 
       CALL RANDOM_SEED( PUT = Seed ) 
       Bing = (/ (I, I = 1, 99) /) 
       DO I = 1, 99 
         CALL RANDOM_NUMBER(Rnd) 
         R = INT( 99 * Rnd + 1 )   
         Temp = Bing(R) 
         Bing(R) = Bing(I) 
         Bing(I) = Temp 
       END DO 
       PRINT "(10I3)", Bing 
       END 

   
   
14.2   PROGRAM Walk 
       INTEGER, PARAMETER :: Xmax = 20 
       INTEGER X, F(-Xmax:Xmax), I, N 
       REAL R 
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       X = 0 
       F = 0 
       READ*, N 
       DO I = 1, N 
         CALL RANDOM_NUMBER(R) 
         IF (R < 0.5) THEN 
           X = X + 1 
         ELSE 
           X = X - 1 
         END IF 
         F(X) = F(X) + 1         ! that's another one at X 
       END DO 
       DO X = -Xmax, Xmax 
         PRINT "(80A1)", ("*", I = 1, F(X)) 
       END DO 
       END 

   
   
14.3   PROGRAM MonteCarlo 
       REAL R, X, Y, Pi 
       INTEGER I, N 
       Pi = 0 
       READ*, N 
       DO I = 1, N 
         CALL RANDOM_NUMBER(R) 
         X = -1 + 2 * R                   ! -1 to 1 
         Y = -1 + 2 * R                   ! ditto 
         IF (X*X + Y*Y < 1) Pi = Pi + 1 
       END DO 
       Pi = 4 * Pi / N 
       PRINT*, "Pi is very roughly", Pi     
       END 

   
14.5  Theoretically (from the binomial distribution), the probability of a DFII crashing is 1/4, while 
that of a DFIV crashing is 5/16; more can go wrong with it since it has more engines! 
14.6  On average, A wins 12 of the possible 32 plays of the game, while B wins 20, as can be seen 
from drawing the game tree. Your simulation should come up with these proportions. (However, it 
can be shown from the tree that B can always force a win, if she plays intelligently.) 

Chapter 15 
15.1   SUBROUTINE MyTrans( A )                                           
         REAL, DIMENSION(:,:) :: A                                       
         INTEGER J, K                                                    
         REAL Temp                                                       
         DO J = 1, SIZE(A,1)                                             
           DO K = J, SIZE(A,1) ! start at J to avoid swopping back     
             Temp = A(J,K)                                               
             A(J,K) = A(K,J)                                             
             A(K,J) = Temp                                               
           END DO                                                        
         END DO                                                          
       END SUBROUTINE MyTrans  

Chapter 16 
   
16.1 
(a)  The real roots are 1.856 and –.697, the complex roots are 0.0791±1.780i. 
(b)  0.589, 3.096, 6.285, ... (roots get closer to  multiples of π). 
(c)  1, 2, 5. 
(d)  1.303(e)  Real roots at 1.768 and 2.241. 
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16.2  Successive bisections are: 1.5, 1.25, 1.375, 1.4375 and 1.40625. The exact answer is 
1.414214..., so the last bisection is within the required error. 
16.3  22 (exact answer is 21.3333). 

16.4  After 30 years the exact answer is 2117 ( )1000ert
. 

16.5  The differential equations to be solved are 
   

 
   

dS dt r S
dY dt r S r Y

/
/

= −
= −

1

1 2 The exact solution after 8 hours is S = ×6 450 1025.  and Y = ×2 312 1026.  
   
16.6   PROGRAM IMPALA 
       INTEGER I, N 
       REAL A, B, H, R, T, X 
       PRINT*, "Enter R, B, A, X(0), H:" 
       READ*, R, B, A, X, H 
       N = INT( 24/H + SPACING(H) ) + 1     ! trip count 
       T = 0 
       DO I = 1, N 
         IF (MOD(I-1, INT(1/H + SPACING(H))) == 0) THEN ! output  
                   ! every month starting with initial value 
           PRINT "(2F8.2)", T, X 
         END IF 
         T = T + H 
         X = X + H * (R - B * X * SIN(A * T)) * X 
       END DO 
       END 

   
16.7  With 10 intervals (n = 5), the luminous efficiency is 14.512725%. With 20 intervals it is 
14.512667%. These results justify the use of 10 intervals in any further computations involving this 
problem. This is a standard way of testing the accuracy of a numerical method: halve the step-length 
and see how  much the solution changes. 

 


