Capítulo 3

Funções reais de n variáveis

1 Derivadas parciais

Definição 1.1. Seja $f:U\longrightarrow \mathbb{R}$ uma função real definida num subconjunto aberto $U\subset \mathbb{R}^n$. Dado $\alpha\in U$, a i-ésima derivada parcial de f no ponto α , $1\leq i\leq n$, é o limite

$$\frac{\partial f}{\partial x_i}(\alpha) = \lim_{t \to 0} \frac{f(\alpha + te_i) - f(\alpha)}{t}$$
,

quando tal limite existe. Usa-se também a notação $\partial_i f(a)$.

Observação 1.1. Dados o ponto $\alpha \in U$ e $i \in \{1, \ldots, n\}$, a imagem do caminho de classe C^{∞} $\lambda : \mathbb{R} \longrightarrow \mathbb{R}^n$, $\lambda(t) = \alpha + te_i$, é a reta que passa por α e é paralela ao i–ésimo eixo. Como U é aberto e $\alpha \in U$, existe $\varepsilon > 0$ tal que $t \in (-\varepsilon, \varepsilon) \Longrightarrow \lambda(t) = \alpha + te_i \in U$.

A i-ésima derivada parcial de f no ponto α é, portanto, a derivada da função $f \circ \lambda : (-\epsilon, \epsilon) \longrightarrow \mathbb{R}$ no ponto t = 0, ou seja, $\frac{\partial f}{\partial x_i}(\alpha) = (f \circ \lambda)'(0)$, pois

$$(f\circ\lambda)'(0)=\lim_{t\to 0}\frac{f\circ\lambda(t)-f\circ\lambda(0)}{t}=\lim_{t\to 0}\frac{f(\alpha+te_i)-f(\alpha)}{t}=\frac{\partial f}{\partial x_i}(\alpha)\,.$$

• Assim, o cálculo prático da i—ésima derivada parcial de uma função real $f(x_1, \ldots, x_n)$ se faz considerando todas as variáveis como se fossem constantes, exceto a i—ésima, e aplicando as regras usuais de derivação em relação a esta variável.

Observação 1.2. Quando n=2, o gráfico de f, $G=\{(x,y,f(x,y)),|(x,y)\in Dom(f)\}$ é uma "superfície" em \mathbb{R}^3 , e a restrição de f ao segmento de reta que passa por c=(a,b) e é paralelo ao eixo das abscissas tem como gráfico uma curva plana $x\longmapsto (x,b,f(x,b))$ obtida na superfície fazendo y constante igual a b. Portanto, $\frac{\partial f}{\partial x}(a,b)$ é a inclinação da reta tangente a esta curva, no ponto (a,b,f(a,b)), em relação ao plano horizontal, uma vez que:

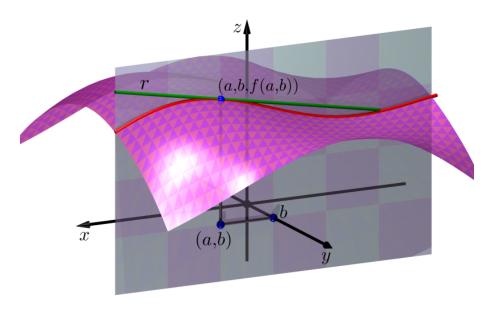


Fig. 1: $\frac{\partial f}{\partial x}(a,b)$ é a inclinação da reta r

$$r = \left\{ \left. \left(1,0,\frac{\partial f}{\partial x}(\alpha,b)\right)t + (\alpha,b,f(\alpha,b)) \,|\, t \in \mathbb{R} \right. \right\} = \left\{ \left. \left(x,b,\frac{\partial f}{\partial x}(\alpha,b)(x-\alpha) + f(\alpha,b)\right) \,|\, x \in \mathbb{R} \right\}.$$

Observação 1.3. A i-ésima derivada parcial $\frac{\partial f}{\partial x_i}$ dá informações sobre o comportamento de f ao longo de um segmento de reta contido em U e paralelo ao i—ésimo eixo.

• Por exemplo, se $f:U\longrightarrow \mathbb{R}$ está definida num aberto $U\subset \mathbb{R}^2$, $J=\{(\mathfrak{a},\mathfrak{t})\,|\,\mathfrak{t}\in [0,1]\}\subset U$ e $\frac{\partial f}{\partial y}(\mathfrak{a},\mathfrak{t})>0$ para todo $\mathfrak{t}\in [0,1]$, então f é crescente ao longo de J, ou seja,

$$0 \leq s < t \leq 1 \Longrightarrow f(\alpha,s) < f(\alpha,t).$$

Definição 1.2. Dizemos que uma função $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ não depende da i-ésima variável quando $a, b \in U$, $b = a + te_i \Longrightarrow f(a) = f(b)$.

Neste caso, existe $\frac{\partial}{\partial x_i} f(\alpha)$ em todos os pontos $\alpha \in U$ e é igual a zero. Mas a recíproca nem sempre é verdadeira, como veremos abaixo.

Definição 1.3. Um conjunto $U \subset \mathbb{R}^n$ é chamado i—*convexo* $(1 \le i \le n)$ quando: $a, b \in U, b = a + te_i \Longrightarrow [a, b] = \{a + se_i | s \in [0, t]\} \subset U.$

• Assim, se $U \subset \mathbb{R}^n$ é um aberto i—convexo e $f: U \longrightarrow \mathbb{R}$ é uma função tal que $\frac{\partial f}{\partial x_i}(\alpha) = 0$ para todo $\alpha \in U$, então f independe da i—ésima variável.

De fato, se $a, b \in U$, $b = a + t_0 e_i$, então $\lambda(s) = a + s e_i \in U$, para todo $s \in [0, t_0]$, e, portanto, existe $\varepsilon > 0$ tal que $\lambda(s) \in U$ para todo $s \in (-\varepsilon, t_0 + \varepsilon)$.

Além disso, como $f \circ \lambda$ é derivável em $(-\varepsilon, t_0 + \varepsilon)$ e $(f \circ \lambda)'(s) = \frac{\partial f}{\partial x_i}(\alpha + se_i) = 0$ para todo $s \in (-\varepsilon, t_0 + \varepsilon)$, então $f \circ \lambda(s) = f \circ \lambda(0)$ para todo $s \in (-\varepsilon, t_0 + \varepsilon)$. Logo $f(b) = f(\alpha)$.

Observação 1.4. Em \mathbb{R}^2 , dizemos *horizontalmente* e *verticalmente convexo*, em vez de 1-convexo e 2-convexo, respectivamente.

Exemplo 1.1. Seja $\Gamma=\{(x,0)\in\mathbb{R}^2|x\geq 0\}$ o semi-eixo positivo fechado das abscissas. Então $U=\mathbb{R}^2-\Gamma$ é aberto, horizontalmente convexo, mas não é verticalmente convexo.

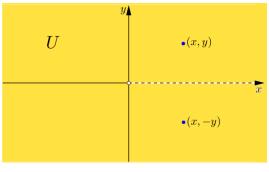


Fig. 2: $U = \mathbb{R}^2 - \Gamma$

Seja $f:U\longrightarrow \mathbb{R}$ a função definida por $f(x,y)=x^2$, se x>0 e y>0, e f(x,y)=0, se $x\leq 0$ ou $y\leq 0$. Então f possui derivada parcial $\frac{\partial f}{\partial y}(p)=0$ para todo ponto $p\in U$, pois:

- $f|_{r_0^+} \equiv 0$, onde $r_0^+ = \{(0,t) \, | \, t > 0\}$;
- $f|_{r_0^-} \equiv 0$, onde $r_0^- = \{(0,t) \, | \, t < 0\}$;
- $f|_{r_{x_0}} \equiv 0$, onde $r_{x_0} = \{(x_0, t) | t \in \mathbb{R}\}$ e $x_0 < 0$;
- $\bullet \ f|_{r_{x_0}^+} \equiv x_0^2 \ e \ f|_{r_{x_0}^-} \equiv 0 \ , \ \text{onde} \ r_{x_0}^+ = \{(x_0,t) \, | \, t>0\} \ , \ r_{x_0}^- = \{(x_0,t) \, | \, t<0\} \ e \ x_0>0.$

Mas f não é independente da segunda variável, pois se x>0 e y>0, então $f(x,y)=x^2>0$ e f(x,-y)=0.

Observação 1.5. A existência apenas das derivadas parciais não permite conclusões sobre o comportamento n—dimensional da função. Por exemplo, a existência de todas as derivadas parciais num ponto não implica a continuidade da função nesse ponto.

Exemplo 1.2. Seja $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$, definida por $f(x,y) = \frac{xy}{x^2 + y^2}$, se $(x,y) \neq (0,0)$, e f(0,0) = 0. Se $z = (x,y) \neq (0,0)$, temos que:

$$\frac{\partial f}{\partial x}(z) = \frac{y(x^2+y^2)-xy(2x)}{(x^2+y^2)^2} = \frac{y^3-x^2y}{(x^2+y^2)^2} \quad e \quad \frac{\partial f}{\partial y}(z) = \frac{x(x^2+y^2)-xy(2y)}{(x^2+y^2)^2} = \frac{x^3-xy^2}{(x^2+y^2)^2} \, .$$

E, na origem:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0 \quad \text{ e } \quad \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0 \ .$$

Assim, f possui derivadas parciais em todos os pontos de \mathbb{R}^2 . Mas f não é contínua na origem.

 $\begin{aligned} &\text{Mais ainda, n\~ao existe} \lim_{(x,y) \longrightarrow (0,0)} f(x,y), \text{ pois } f(\alpha t,b t) = \frac{\alpha b}{\alpha^2 + b^2}, \text{ para todo } t \in \mathbb{R} \text{ e todo } (\alpha,b) \neq \\ &(0,0), \text{ e, portanto, } \lim_{t \to 0} f(t,t) = \frac{1}{2} \neq \frac{2}{5} = \lim_{t \to 0} f(t,2t), \text{ por exemplo. } \square \end{aligned}$

2 Derivadas direcionais

Definição 2.1. Sejam $f: U \longrightarrow \mathbb{R}$ uma função definida no aberto $U \subset \mathbb{R}^n$, $a \in U$ e $v \in \mathbb{R}^n$. A derivada direcional de f no ponto a segundo o vetor v é o limite:

$$\frac{\partial f}{\partial \nu}(\alpha) = \lim_{t \to 0} \frac{f(\alpha + t\nu) - f(\alpha)}{t} ,$$

quando tal limite existe.

Observação 2.1. Se $\nu=0,$ então $\frac{\partial f}{\partial \nu}(\alpha)=0$ para todo $\alpha\in U.$

Observação 2.2. As derivadas parciais são casos particulares das derivadas direcionais, pois: $\frac{\partial f}{\partial x_i}(\alpha) = \frac{\partial f}{\partial e_i}(\alpha)$ é a derivada direcional de f no ponto α segundo o vetor e_i .

Observação 2.3. Dados $a \in U$ e $v \in \mathbb{R}^n$, existe $\varepsilon > 0$ tal que $a + tv \in U$ para todo $t \in (-\varepsilon, \varepsilon)$. Assim, se $\lambda : (-\varepsilon, \varepsilon) \longrightarrow U$ é o caminho retilíneo, com $\lambda(0) = a$ e $\lambda'(t) = v$ para todo $t \in (-\varepsilon, \varepsilon)$, temos que: $\frac{\partial f}{\partial v}(a) = (f \circ \lambda)'(0)$.

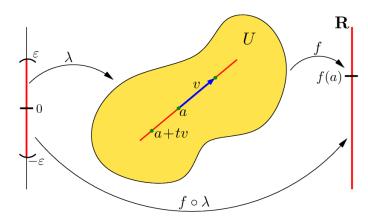


Fig. 3: f ao longo do caminho retilíneo λ

Exemplo 2.1. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função dada por $f(x,y) = \frac{xy}{x^2 + y^2}$, $(x,y) \neq (0,0)$, e f(0,0) = 0. Então f possui as derivadas direcionais $\frac{\partial f}{\partial \nu}(0,0)$ para todo $\nu = (\alpha,0)$ ou $\nu = (0,\beta)$, as quais são nulas, mas f não possui derivada direcional na origem segundo um vetor $\nu = (\alpha,\beta)$, com $\alpha \neq 0$ e $\beta \neq 0$, pois:

$$\bullet \quad \frac{\partial f}{\partial \nu}(0,0) \quad = \quad \lim_{t \to 0} \frac{f(t\alpha,0) - f(0,0)}{t} = 0 \; , \quad \nu = (\alpha,0)$$

$$\bullet \quad \frac{\partial f}{\partial \nu}(0,0) \ = \ \lim_{t \to 0} \frac{f(0,t\beta) - f(0,0)}{t} = 0 \,, \quad \nu = (0,\beta) \,,$$

e o limite

$$\lim_{t\to 0} \frac{f(\alpha t, \beta t) - f(0, 0)}{t} = \lim_{t\to 0} \frac{\alpha \beta}{\alpha^2 + \beta^2} \frac{1}{t}$$

não existe. \sqcap

Observação 2.4. Se $\alpha \in \mathbb{R} - \{0\}$, então existe $\frac{\partial f}{\partial \nu}(\alpha)$ num ponto α se, e somente se, existe $\frac{\partial f}{\partial (\alpha \nu)}(\alpha)$ e, no caso afirmativo, temos:

$$\frac{\partial f}{\partial (\alpha \nu)}(\alpha) = \lim_{t \to 0} \frac{f(\alpha + t\alpha \nu) - f(\alpha)}{t} = \alpha \lim_{t \to 0} \frac{f(\alpha + t\alpha \nu) - f(\alpha)}{\alpha t} = \alpha \frac{\partial f}{\partial \nu}(\alpha) \,.$$

Mas, pode ocorrer que a derivada direcional $\frac{\partial f}{\partial \nu}$ exista em todos os pontos do domínio de f, segundo todos os vetores $\nu \in \mathbb{R}^n$, sem que se tenha necessariamente:

$$\frac{\partial f}{\partial (v+w)}(\alpha) = \frac{\partial f}{\partial v}(\alpha) + \frac{\partial f}{\partial w}(\alpha).$$

Exemplo 2.2. Seja $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função dada por

$$g(x,y) = \frac{x^2y}{x^2 + y^2}$$
, se $(x,y) \neq (0,0)$, e $g(0,0) = 0$.

Pode-se provar, a partir da definição, que existe $\frac{\partial g}{\partial \nu}(a)$ para todo $a \in \mathbb{R}^2$ e todo $v \in \mathbb{R}^2$. Em particular, na origem:

•
$$\frac{\partial g}{\partial \nu}(0,0) = \lim_{t\to 0} \frac{g(t\alpha,t\beta)-g(0,0)}{t} = \frac{\alpha^2\beta}{\alpha^2+\beta^2}$$
, se $\nu=(\alpha,\beta)\neq(0,0)$.

е

•
$$\frac{\partial g}{\partial \nu}(0,0) = 0$$
, se $\nu = (0,0)$.

Evidentemente, para $\alpha = (0,0)$, não vale

$$\frac{\partial g}{\partial \nu}(\alpha) + \frac{\partial g}{\partial w}(\alpha) = \frac{\partial g}{\partial (\nu + w)}(\alpha).$$

Por exemplo, para v = (1,1) e w = (1,2):

$$\frac{\partial g}{\partial \nu}(0,0) = \frac{1}{2}\,, \quad \frac{\partial g}{\partial w}(0,0) = \frac{2}{5}\,, \quad \textbf{e} \quad \frac{\partial g}{\partial (\nu+w)}(0,0) = \frac{12}{13}\,,$$

e, portanto,
$$\frac{\partial g}{\partial \nu}(0,0) + \frac{\partial g}{\partial w}(0,0) \neq \frac{\partial g}{\partial (\nu+w)}(0,0)$$
.

Observação 2.5. Na seção 3, mostraremos que $\frac{\partial f}{\partial v}$ depende linearmente de v se f é *diferenciável*, uma hipótese mais forte do que possuir derivadas direcionais.

A função g do exemplo anterior é contínua (ver exercício 8:27, capítulo 1), mas não é verdade, em geral, que a existência de todas as derivadas direcionais implique em continuidade.

Exemplo 2.3. Seja $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função definida por $h(x,y) = \frac{x^3y}{x^6 + y^2}$, se $(x,y) \neq (0,0)$, e h(0,0) = 0.

Para $(a,b) \neq (0,0)$ e $v = (\alpha,\beta) \in \mathbb{R}^2$, temos que, se $\lambda(t) = (a,b) + t(\alpha,\beta) = (a+t\alpha,b+t\beta)$, então:

$$(h \circ \lambda)(t) = \frac{(a + t\alpha)^3(b + t\beta)}{(a + t\alpha)^6 + (b + t\beta)^2}$$

e, portanto, a derivada $(h \circ \lambda)'(t)$ é dada por:

$$\frac{\left(3(a+t\alpha)^2\alpha(b+t\beta)+\beta(a+t\alpha)^3\right)\left((a+t\alpha)^6+(b+t\beta)^2\right)-(a+t\alpha)^3(b+t\beta)\left(6\alpha(a+t\alpha)^5+2\beta(b+t\beta)\right)}{\left((a+t\alpha)^6+(b+t\beta)^2\right)^2}.$$

Logo,

$$\begin{split} \frac{\partial h}{\partial \nu}(\alpha,b) &= (h \circ \lambda)'(0) &= \frac{(3\alpha^2 b\alpha + \beta\alpha^3)(\alpha^6 + b^2) - \alpha^3 b(6\alpha\alpha^5 + 2\beta b)}{(\alpha^6 + b^2)^2} \\ &= \left(\frac{-3\alpha^8 b + 3\alpha^2 b^3}{(\alpha^6 + b^2)^2}\right)\alpha + \left(\frac{\alpha^9 - \alpha^3 b^2}{(\alpha^6 + b^2)^2}\right)\beta\,, \end{split}$$

E para (a, b) = (0, 0) e $v = (\alpha, \beta) \in \mathbb{R}^2$,

$$\frac{\partial h}{\partial \nu}(0,0) \ = \ \lim_{t \to 0} \frac{h(t\alpha,t\beta)}{t} = \lim_{t \to 0} \frac{t^4\alpha^3\beta}{t(t^6\alpha^6+t^2\beta^2)} = \lim_{t \to 0} \frac{t\alpha^3\beta}{t^4\alpha^6+\beta^2} = 0 \,, \quad \text{se} \ \beta \neq 0;$$

$$e \qquad \frac{\partial h}{\partial \nu}(0,0) \ = \ \lim_{t \to 0} \frac{h(t\alpha,0)}{t} = \lim_{t \to 0} 0 = 0 \,, \quad \text{se} \ \beta = 0 \,.$$

Assim, existem as derivadas direcionais $\frac{\partial h}{\partial \nu}(a)$, para todo $a \in \mathbb{R}^2$ e todo $\nu \in \mathbb{R}^2$, e dependem linearmente de ν .

Em $\mathbb{R}^2 - \{(0,0)\}$, a função h é contínua, mas h não é contínua na origem, pois $h(x,x^3) = \frac{1}{2}$ para todo $x \neq 0$.

 Outra propriedade desejável para um conceito adequado de derivada de uma função é que a composta de duas funções deriváveis seja também derivável.

Exemplo 2.4. Seja $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $\varphi(0,0) = 0$ e $\varphi(x,y) = \frac{x^3y}{x^4 + y^2}$, se $(x,y) \neq (0,0)$.

 $\label{eq:poisson} \begin{aligned} \text{Em } \mathbb{R}^2 - \{(0,0)\}, \ \phi \ \text{\'e contínua, e em } (0,0), \ \phi \ \text{tamb\'em \'e contínua, pois, para} \ (x,y) \neq (0,0), \\ |\ \phi(x,y)| = \left| x \, \frac{x^2}{\sqrt{x^4 + u^2}} \, \frac{y}{\sqrt{x^4 + u^2}} \, \right| \leq |x| \, , \end{aligned}$

$$|\varphi(x,y)| = \left| x \frac{x^2}{\sqrt{x^4 + y^2}} \frac{y}{\sqrt{x^4 + y^2}} \right| \le |x|$$

e, portanto, $\lim_{(x,u)\to(0,0)} \phi(x,y) = 0$.

Além disso, para todo $v = (\alpha, \beta) \in \mathbb{R}^2$, $\beta \neq 0$,

$$\frac{\partial \phi}{\partial \nu}(0,0) = \lim_{t \to 0} \frac{\phi(t\alpha,t\beta)}{t} = \lim_{t \to 0} \frac{t\alpha^3\beta}{t^2\alpha^4 + \beta^2} = 0 \,, \quad e \quad \frac{\partial \phi}{\partial \nu}(0,0) = \lim_{t \to 0} \frac{\phi(t\alpha,0)}{t} = \lim_{t \to 0} 0 = 0 \,,$$
 para $\nu = (\alpha,0) \in \mathbb{R}^2.$

Portanto, todas as derivadas direcionais existem na origem e dependem linearmente de ν . De modo análogo ao exemplo anterior, podemos calcular as derivadas direcionais de ϕ num ponto $(a,b) \in \mathbb{R}^2 - \{(0,0)\}$ e verificar que elas dependem linearmente de ν .

Entretanto, se considerarmos o caminho derivável $\lambda:\mathbb{R}\longrightarrow\mathbb{R}^2$, dado por $\lambda(t)=\left(t,t^2\,\text{sen}\,\frac{1}{t}\right)$, se $t\neq 0,\,\lambda(0)=(0,0)$, temos que $f\circ\lambda:\mathbb{R}\longrightarrow\mathbb{R}$ não é derivável em t=0, pois o limite

$$\lim_{t \to 0} \frac{\phi(\lambda(t)) - \phi(\lambda(0))}{t} = \lim_{t \to 0} \frac{\phi\left(t, t^2 \operatorname{sen} \frac{1}{t}\right)}{t} = \lim_{t \to 0} \frac{t^5 \operatorname{sen} \frac{1}{t}}{t^5 + t^5 \operatorname{sen} \frac{1}{t}} = \lim_{t \to 0} \frac{\operatorname{sen} \frac{1}{t}}{1 + \operatorname{sen} \frac{1}{t}} \,,$$

não existe, uma vez que:

$$\bullet \lim_{n\to\infty} \frac{\text{sen}\,\frac{1}{t_n}}{1+\text{sen}\,\frac{1}{t_n}} = \lim_{n\to\infty} 0 = 0 \,,\, \text{quando}\,\, t_n = \frac{1}{n\pi} \,,$$

$$\text{e}\quad \bullet \lim_{n \to \infty} \frac{\text{sen}\,\frac{1}{t_n}}{1+\text{sen}\,\frac{1}{t_n}} = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}\,,\, \text{quando}\,\, t_n = \frac{2}{(4n+1)\pi}\,.\,\, \square$$

 No entanto, a existência de derivadas direcionais permite demonstrar o Teorema do Valor Médio para funções reais de π variáveis sob a forma de igualdade, como no caso de uma só variável.

Teorema 2.1. (do Valor Médio)

Seja $f:U\longrightarrow \mathbb{R}$ uma função definida no aberto $U\subset \mathbb{R}^n$. Se $[\alpha,\alpha+\nu]\subset U$, $f|_{[\alpha,\alpha+\nu]}$ é contínua e existe a derivada direcional $\frac{\partial f}{\partial \nu}(x)$ para todo $x\in (\alpha,\alpha+\nu)$, então existe $\theta_0\in (0,1)$ tal que

$$f(\alpha + \nu) - f(\alpha) = \frac{\partial f}{\partial \nu}(\alpha + \theta_0 \nu)$$

Prova.

Seja $\lambda:[0,1]\longrightarrow U$ o caminho C^{∞} dado por $\lambda(t)=\mathfrak{a}+t\mathfrak{v},\ t\in[0,1].$ Então a função $f\circ\lambda:[0,1]\longrightarrow\mathbb{R}$ é contínua em [0,1] e derivável em (0,1), pois, para $\theta\in(0,1)$,

$$\begin{split} (f \circ \lambda)'(\theta) &= \lim_{t \to 0} \frac{(f \circ \lambda)(\theta + t) - f \circ \lambda(\theta)}{t} = \lim_{t \to 0} \frac{f(\alpha + (\theta + t)\nu) - f(\alpha + \theta\nu)}{t} \\ &= \lim_{t \to 0} \frac{f((\alpha + \theta\nu) + t\nu) - f(\alpha + \theta\nu)}{t} = \frac{\partial f}{\partial \nu}(\alpha + \theta\nu) \end{split}$$

Assim, pelo Teorema do Valor Médio, para funções reais de uma variável real, existe $\theta_0 \in (0, 1)$ tal que $(f \circ \lambda)(1) - (f \circ \lambda)(0) = (f \circ \lambda)'(\theta_0)$, ou seja, existe $\theta_0 \in (0, 1)$ tal que

$$f(\alpha + \nu) - f(\alpha) = \frac{\partial f}{\partial \nu}(\alpha + \theta_0 \nu)$$
.

Observação 2.6. A existência de $\frac{\partial f}{\partial \nu}$ em todo ponto de $(\alpha, \alpha + \nu)$ garante a continuidade de $f|_{(\alpha, \alpha + \nu)}$.

De fato, como foi provado acima, $f \circ \lambda$ é derivável em (0,1) e, portanto, se $x_k = a + t_k \nu$, $t_k \in (0,1)$, é uma sequência de pontos de $(a,a+\nu)$ que converge para o ponto $a+t_0\nu\in(a,a+\nu)$, então

$$f(x_k) = f(a + t_k v) = f \circ \lambda(t_k) \longrightarrow f \circ \lambda(t_0) = f(a + t_0 v),$$

uma vez que
$$t_k = \frac{\|x_k - a\|}{\|\nu\|} \longrightarrow \frac{\|a + t_0 \nu - a\|}{\|\nu\|} = t_0$$
 .

Corolário 2.1. Seja $U \subset \mathbb{R}^n$ aberto e conexo. Se $f: U \longrightarrow \mathbb{R}$ possui derivadas direcionais em todo ponto $x \in U$ e $\frac{\partial f}{\partial v}(x) = 0$, para todo $x \in U$ e todo $v \in \mathbb{R}^n$, então f é constante.

Prova.

Seja $a \in U$ fixo.

Afirmação: se $[a,b] \subset U$, então $f|_{[a,b]}$ é contínua.

• De fato, como $a, b \in U$ e U é aberto, existe $\varepsilon > 0$ tal que o segmento

$$(a-\varepsilon(b-a),a+(1+\varepsilon)(b-a))=\{a+t(b-a)|t\in(-\varepsilon,1+\varepsilon)\}$$

está contido em U.

Além disso, como existe $\frac{\partial f}{\partial (b-a)}(x)$ para todo $x\in U$, temos, pela observação anterior, que a restrição $f|_{(a-\epsilon(b-a),a+(1+\epsilon)(b-a))}$ é contínua.

Portanto, $f|_{[a,b]}$ é contínua.

• Resulta, então, do Teorema do Valor Médio, que se $[a,b] \subset U$, existe $\theta_0 \in (0,1)$ tal que

$$f(b)-f(a)=f(a+(b-a))-f(a)=\frac{\partial f}{\partial (b-a)}(a+\theta_0(b-a))=0\,,$$

ou seja, f(b) = f(a).

Por outro lado, se $x \in U$ existe, pelo teorema 13.8 do Capítulo 1, uma poligonal contida em U com vértices $a_0 = a, a_1, \dots, a_k = x$.

Temos, então, sucessivamente, que

$$f(\alpha) = f(\alpha_0) = f(\alpha_1) = \ldots = f(\alpha_k) = f(x),$$

ou seja, f(x) = f(a) para todo $x \in U$. Logo f é constante.

Observação 2.7. Neste corolário, basta que as derivadas parciais $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,n$, existam e sejam nulas em todos os pontos do aberto conexo $U\subset\mathbb{R}^n$, pois, pela observação 13.5 do Capítulo 1, dados $a,b\in U$, existe uma poligonal contida em U ligando os pontos a e b com lados paralelos a um dos eixos coordenados.

3 Funções diferenciáveis

A definição de função diferenciável que daremos abaixo é devida a *Maurice Fréchet* (França, 1878-1973) e *Otto Stolz* (Áustria, 1842-1905). Ela é uma extensão adequada do conceito de função derivável de uma só variável para funções de n variáveis.

Definição 3.1. Seja $f: U \longrightarrow \mathbb{R}$ uma função definida no aberto $U \subset \mathbb{R}^n$. Dizemos que f é diferenciável no ponto $\alpha \in U$ quando existem constantes $A_1, \ldots, A_n \in \mathbb{R}$ tais que, para todo vetor $v = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$, com $\alpha + v \in U$, temos que:

$$f(\alpha + \nu) = f(\alpha) + A_1 \alpha_1 + \ldots + A_n \alpha_n + r(\nu),$$

onde $\lim_{\nu \to 0} \frac{\mathbf{r}(\nu)}{\|\nu\|} = 0$.

Definição 3.2. Dizemos que $f: U \longrightarrow \mathbb{R}$ é *diferenciável* quando f é diferenciável em todos os pontos de U.

Observação 3.1. Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ diferenciável no ponto a. Então, se $v = te_i$, ou seja, $\alpha_i = 0, j \neq i, \alpha_i = t$, temos que

$$\frac{f(\alpha+te_i)-f(\alpha)}{t}=A_i+\frac{r(te_i)}{t}=A_i\pm\frac{r(te_i)}{\|te_i\|}\,,\quad i=1,\dots,n\,.$$

Logo, como $\lim_{t\to 0} \frac{r(te_i)}{\|te_i\|} = 0$, para todo $i=1,\ldots,n$, obtemos que a derivada parcial $\frac{\partial f}{\partial x_i}(\alpha)$ existe e é igual a A_i , para todo $i=1,\ldots,n$.

• Assim, $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ é diferenciável no ponto $a\in U$ se, e só se, as derivadas parciais $\frac{\partial f}{\partial x_i}(a),\,i=1,\ldots,n$, existem, e para todo $\nu=(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$ tal que $a+\nu\in U$, temos

$$f(\alpha + \nu) = f(\alpha) + \frac{\partial f}{\partial x_1}(\alpha)\alpha_1 + \ldots + \frac{\partial f}{\partial x_n}(\alpha)\alpha_n + r(\nu),$$

onde $\lim_{\nu \to 0} \frac{\mathbf{r}(\nu)}{\|\nu\|} = 0$.

Observação 3.2. Se $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ é diferenciável no ponto $a \in U$, então f é contínua no ponto a.

De fato, como $\lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|}$ implica que $\lim_{\nu \to 0} r(\nu) = \lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|} \|\nu\| = 0$, temos que

$$\lim_{x\to a} f(x) = \lim_{x\to a} (f(a) + A_1(x_1 - a_1) + \ldots + A_n(x_n - a_n) + r(x - a)) = f(a),$$

uma vez que $v = x - a \longrightarrow 0$ quando $x \rightarrow a$.

Observação 3.3. A condição $\lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|} = 0$ significa que $r(\nu)$ tende a zero mais rapidamente

do que ν . Isto se exprime dizendo-se que $r(\nu)$ é um infinitésimo de ordem superior a ν . Assim, f é diferenciável no ponto $\alpha \in U$ quando $f(\alpha + \nu) - f(\alpha)$ é igual a um funcional linear

$$\sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \ \alpha_i + (\text{um resto infinitamente pequeno em relação a } \nu).$$

Observação 3.4. Fazendo $\rho(\nu)=\frac{r(\nu)}{\|\nu\|}$ se $\nu\neq 0,~\alpha+\nu\in U,~e~\rho(0)=0,$ temos que:

 $f:U\longrightarrow \mathbb{R}$ é diferenciável no ponto $\alpha\in U$ se, e só se, todas as derivadas parciais $\frac{\partial f}{\partial x_i}(\alpha)$, $i=1,\ldots,n$, existem no ponto α e, para todo $\nu=(\alpha_1,\ldots,\alpha_n)\in \mathbb{R}^n$ tal que $\alpha+\nu\in U$ vale:

$$f(\alpha+\nu)=f(\alpha)+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\alpha)\alpha_i+\rho(\nu)\left\|\nu\right\|,\quad\text{onde}\lim_{\nu\to 0}\rho(\nu)=0.$$

Ou seja, f é diferenciável no ponto $a \in U$ se, e só se, a função real

$$\rho: V_{\alpha} = \{ \nu \in \mathbb{R}^n \, | \, \alpha + \nu \in U \} \longrightarrow \mathbb{R}$$

é contínua no ponto $\nu=0$. Note que o conjunto V_{α} é aberto em \mathbb{R}^n e $0\in V_{\alpha}$.

Observação 3.5. Ser ou não ser diferenciável, independe da norma considerada em \mathbb{R}^n .

Observação 3.6. Para funções $f: I \longrightarrow \mathbb{R}$ definidas num intervalo aberto $I \subset \mathbb{R}$, diferenciabilidade é o mesmo que derivabilidade, pois se $f(a+t) = f(a) + At + \rho(t) |t|$, ou seja,

$$\rho(t) = \pm \left(\frac{f(\alpha + t) - f(\alpha)}{t} - A \right),\,$$

então, $\lim_{t\to 0} \rho(t)=0$ se, e só se, f é derivável no ponto α e $f'(\alpha)=A.$

Observação 3.7. Se $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ é diferenciável no ponto $\alpha\in U$, então f possui derivada direcional no ponto α segundo qualquer vetor $\nu=(\alpha_1,\ldots,\alpha_n)$ e

$$\frac{\partial f}{\partial \nu}(\alpha) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha) \, \alpha_i.$$

De fato, seja $v \in \mathbb{R}^n$. Então existe $\varepsilon > 0$ tal que $a + tv \in U$ para todo $t \in (-\varepsilon, \varepsilon)$, e

$$f(\alpha + t\nu) = f(\alpha) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha) t \alpha_i + \rho(t\nu) |t| \|\nu\|.$$

Como $\lim_{t\to 0}\rho(t\nu)=0,$ temos que

$$\frac{\partial f}{\partial \nu}(\alpha) = \lim_{t \to 0} \frac{f(\alpha + t\nu) - f(\alpha)}{t} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \alpha_i + \lim_{t \to 0} \left(\pm \rho(t\nu) \, \|\nu\| \right) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \alpha_i \,.$$

Então $\frac{\partial f}{\partial \nu}(a)$ existe e depende linearmente de ν , ou seja:

•
$$\frac{\partial f}{\partial(\alpha \nu)}(\alpha) = \alpha \frac{\partial f}{\partial \nu}(\alpha)$$
, para todo $\alpha \in \mathbb{R}$ e $\nu \in \mathbb{R}^n$,

е

•
$$\frac{\partial f}{\partial (v+w)}(\alpha) = \frac{\partial f}{\partial v}(\alpha) + \frac{\partial f}{\partial w}(\alpha)$$
, para todos $v, w \in \mathbb{R}^n$.

Teorema 3.1. (Regra da cadeia)

Sejam $U \subset \mathbb{R}^m$ e $V \subset \mathbb{R}^n$ abertos, $f = (f_1, \ldots, f_n) : U \longrightarrow \mathbb{R}^n$ tal que $f(U) \subset V$ e cada função coordenada $f_i : U \longrightarrow \mathbb{R}$ é diferenciável no ponto $a \in U$. Se $g : V \longrightarrow \mathbb{R}$ é diferenciável no ponto b = f(a), então a função composta $g \circ f : U \longrightarrow \mathbb{R}$ é diferenciável no ponto a e suas derivadas parciais são:

$$\frac{\partial (g \circ f)}{\partial x_i}(a) = \sum_{k=1}^n \frac{\partial g}{\partial y_k}(f(a)) \frac{\partial f_k}{\partial x_i}(a), \ i = 1, \dots, m.$$

Prova.

Seja o aberto $U_0 = \{ \nu \in \mathbb{R}^m | \ \alpha + \nu \in U \}$ que contém o ponto $\nu = 0$.

Para cada $v=(\alpha_1,\ldots,\alpha_m)\in U_0$ e $k=1,\ldots,n,$ temos que

$$f_{k}(\alpha + \nu) = f_{k}(\alpha) + \sum_{i=1}^{m} \frac{\partial f_{k}}{\partial x_{i}}(\alpha) \alpha_{i} + \rho_{k}(\nu) \|\nu\|,$$

$$(I)$$

onde cada $\rho_k: U_0 \longrightarrow \mathbb{R}$ é contínua no ponto 0 e $\rho_k(0) = 0$.

Seja a aplicação $\omega=(\beta_1,\ldots,\beta_n):U_0\longrightarrow\mathbb{R}^n$ contínua no ponto 0, com $\omega(0)=0$, cujas funções coordenadas $\beta_k:U_0\longrightarrow\mathbb{R}$ são dadas por:

$$\beta_{k}(\nu) = \sum_{i=1}^{m} \frac{\partial f_{k}}{\partial x_{i}}(\alpha)\alpha_{i} + \rho_{k}(\nu) \|\nu\|. \tag{II}$$

Considerando \mathbb{R}^m com a norma da soma, por exemplo, temos que $\frac{|\alpha_i|}{\|\nu\|_S} \leq 1$ para todo $\nu \in \mathbb{R}^m - \{0\}.$

Logo, cada $\frac{|\beta_k(\nu)|}{\|\nu\|_S}$, $k=1,\ldots,n$, e, portanto, $\frac{\|\omega(\nu)\|_S}{\|\nu\|_S}$, é limitada em $U_1-\{0\}$, onde U_1 é um aberto contido em U_0 tal que $0 \in U_1$ e $\rho_k|_{U_1}$ limitada para todo $k=1,\ldots,n$.

Seja $V_0=\{w\in\mathbb{R}^n\,|\,w+b\in V\}$. Como V_0 é um aberto que contém o vetor 0, ω é contínua no ponto 0 e $\omega(0)=0$, existe um aberto $U_2\subset U_1$ tal que $0\in U_2$ e $\omega(U_2)\subset V_0$.

Seja $v \in U_2$. Então $\omega(v) + b \in V$ e, como $g : V \longrightarrow \mathbb{R}$ é diferenciável em b = f(a), temos, por (I), que

$$g(f(\alpha + \nu)) = g(f(\alpha) + \omega(\nu)) = g(b + \omega(\nu)) = g(b) + \sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b)\beta_k(\nu) + \sigma(\omega(\nu)) \|\omega(\nu)\|,$$

onde $\sigma \circ \omega : U_2 \longrightarrow \mathbb{R}$ é uma função contínua no ponto 0, com $\sigma \circ \omega(0) = 0$.

Logo, por (II),

$$(g \circ f)(\alpha + \nu) = g \circ f(\alpha) + \sum_{k=1}^{n} \frac{\partial g}{\partial y_{k}}(b) \left[\sum_{i=1}^{m} \frac{\partial f_{k}}{\partial x_{i}}(\alpha) \alpha_{i} + \rho_{k}(\nu) \|\nu\| \right] + \sigma \circ \omega(\nu) \|\omega(\nu)\|,$$

ou seja,

$$(g \circ f)(\alpha + \nu) = (g \circ f)(\alpha) + \sum_{i=1}^{m} A_i \alpha_i + R(\nu),$$

$$\text{onde } A_i = \sum_{k=1}^n \frac{\partial g}{\partial y_k}(b) \, \frac{\partial f_k}{\partial x_i}(\alpha) \ \ \text{e} \ \ R(\nu) = \sum_{k=1}^n \frac{\partial g}{\partial y_k}(b) \, \rho_k(\nu) \, \|\nu\| + \sigma \circ \omega(\nu) \, \|\omega(\nu)\|.$$

Como,

$$\frac{R(\nu)}{\|\nu\|} = \sum_{k=1}^{n} \frac{\partial g}{\partial y_k}(b) \, \rho_k(\nu) + \sigma \circ \omega(\nu) \, \frac{\|\omega(\nu)\|}{\|\nu\|} \,,$$

temos que $\lim_{\nu\to 0}\frac{R(\nu)}{\|\nu\|}=0$, pois $\lim_{\nu\to 0}\rho_k(\nu)=0$, $k=1,\ldots,n$, $\lim_{\nu\to 0}\sigma\circ\omega(\nu)=0$ e $\frac{\|\omega(\nu)\|}{\|\nu\|}$ é limitado em $U_2-\{0\}.$

Logo $g \circ f$ é diferenciável no ponto a e

$$\frac{\partial (g \circ f)}{\partial x_i}(\alpha) = \sum_{k=1}^n \frac{\partial g}{\partial y_k}(f(\alpha)) \frac{\partial f_k}{\partial x_i}(\alpha),$$

para todo i = 1, ..., m.

Corolário 3.1. Se $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ é diferenciável no ponto $b\in U$ e $\lambda=(\lambda_1,\ldots,\lambda_n):(\alpha-\epsilon,\alpha+\epsilon)\longrightarrow\mathbb{R}^n$ é um caminho diferenciável com $\lambda(\alpha)=b$, então a função composta $f\circ\lambda:(\alpha-\epsilon,\alpha+\epsilon)\longrightarrow\mathbb{R}$ é diferenciável no ponto α e

$$(f \circ \lambda)'(\alpha) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(b) \lambda_i'(\alpha).$$

Observação 3.8. Se escrevemos $\lambda(t)=(x_1(t),\ldots,x_n(t)),$ então $\lambda'(t)=\left(\frac{dx_1}{dt},\ldots,\frac{dx_n}{dt}\right).$ Indicando com $\frac{df}{dt}$ a derivada da função composta $t\longmapsto f\circ\lambda(t)=f(x_1(t),\ldots,x_n(t)),$ a regra da cadeia nos dá que:

$$\frac{df}{dt} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{dx_i}{dt} \qquad \text{(notação clássica do Cálculo Diferencial.)}$$

Corolário 3.2. Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $I \subset \mathbb{R}$ um intervalo aberto, $f: U \longrightarrow \mathbb{R}$ uma função diferenciável no ponto $a \in U$, com $f(U) \subset I$, $g: I \longrightarrow \mathbb{R}$ diferenciável no ponto b = f(a).

Então $g\circ f:U\longrightarrow \mathbb{R}$ é diferenciável no ponto α e

$$rac{\partial (g\circ f)}{\partial x_i}(\alpha)=g'(b)\,rac{\partial f}{\partial x_i}(\alpha)$$
 ,

para todo i = 1, ..., n.

Observação 3.9. Pela Regra da Cadeia, se $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ é diferenciável no ponto $a\in U$, para calcularmos a derivada direcional $\frac{\partial f}{\partial \nu}(a)=(f\circ\lambda)'(0)$ não é necessário nos restringir ao

caminho retilíneo $\lambda(t)=a+t\nu$. Ou seja, se $\lambda:(-\epsilon,\epsilon)\longrightarrow U$ é um caminho diferenciável qualquer com $\lambda(0)=a$ e $\lambda'(0)=\nu$, ainda teremos

$$\frac{\partial f}{\partial \nu}(\alpha) = (f \circ \lambda)'(0) = \lim_{t \to 0} \frac{f(\lambda(t)) - f(\alpha)}{t} \,.$$

De fato, pela Regra da Cadeia,

$$(f \circ \lambda)'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\alpha) \, \lambda_{i}'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\alpha) \, \alpha_{i} = \frac{\partial f}{\partial \nu}(\alpha) \, .$$

Mas, o mesmo não é verdade se f possui derivadas direcionais em todos os pontos do domínio segundo qualquer vetor, mas não é diferenciável.

Por exemplo, considere a função $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $h(x,y) = \frac{x^3y}{x^6+y^2}$, $(x,y) \neq (0,0)$, e h(0,0) = 0, e seja $\lambda: \mathbb{R} \longrightarrow \mathbb{R}^2$ o caminho diferenciável, $\lambda(t) = (t,t^2)$, com $\lambda(0) = (0,0)$ e $\lambda'(0) = (1,0)$. Então,

$$(h \circ \lambda)'(0) = \lim_{t \to 0} \frac{h(\lambda(t)) - h(0)}{t} = \lim_{t \to 0} \frac{t^5}{t^7 + t^5} = \lim_{t \to 0} \frac{1}{t^2 + 1} = 1 \neq \frac{\partial h}{\partial x}(0, 0) = 0.$$

(ver exemplo 2.3).

Observação 3.10. Nenhuma das funções definidas nos exemplos 2.1, 2.2, 2.3 e 2.4:

•
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $f(x,y) = \frac{xy}{x^2 + y^2}$, $f(0,0) = 0$;

•
$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $g(x,y) = \frac{x^2y}{x^2 + y^2}$, $g(0,0) = 0$;

•
$$h: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $h(x,y) = \frac{x^3y}{x^6 + y^2}$, $h(0,0) = 0$;

•
$$\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $\varphi(x,y) = \frac{x^3y}{x^4 + y^2}$, $\varphi(0,0) = 0$,

são diferenciáveis na origem de \mathbb{R}^2 .

De fato:

- f porque n\u00e3o \u00e9 cont\u00ednua na origem nem possui derivada direcional segundo qualquer vetor na origem.
- g porque, embora seja contínua na origem e existe $\frac{\partial g}{\partial \nu}(0,0)$, para todo $\nu \in \mathbb{R}^2$, as derivadas direcionais na origem não dependem linearmente de ν .
- h porque não é contínua na origem, embora possua derivadas direcionais $\frac{\partial h}{\partial \nu}(p)$, para todo $\nu \in \mathbb{R}^2$ e todo $p \in \mathbb{R}^2$, que dependem linearmente de ν .
- ϕ é contínua em \mathbb{R}^2 , possui derivadas direcionais $\frac{\partial \phi}{\partial \nu}$ segundo qualquer vetor $\nu \in \mathbb{R}^2$, em todos os pontos do plano, que dependem linearmente de ν , mas contraria a Regra da Cadeia, pois $\phi \circ \lambda : \mathbb{R} \longrightarrow \mathbb{R}$ não é derivável na origem, onde $\lambda : \mathbb{R} \longrightarrow \mathbb{R}^2$ é o caminho diferenciável dado por

$$\lambda(t) = \left(t\,,\,t^2\,\text{sen}\,\frac{1}{t}\right)\!,\,t\neq 0,\,\text{e}\,\,\lambda(0) = 0.$$

 Diretamente, podemos verificar que, embora cada uma das funções acima possua derivadas parciais na origem, elas não cumprem a condição:

$$\lim_{\nu \to (0,0)} \frac{\mathbf{r}(\nu)}{\|\nu\|} = \lim_{\substack{\alpha \to 0 \\ \beta \to 0}} \frac{1}{\sqrt{\alpha^2 + \beta^2}} \left(F(\alpha, \beta) - \frac{\partial F}{\partial x}(0, 0) \alpha - \frac{\partial F}{\partial y}(0, 0) \beta \right) = 0,$$

onde $v = (\alpha, \beta)$.

Por exemplo, para F = f, temos que $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ e $f(\alpha,\beta) = \frac{\alpha\beta}{\alpha^2 + \beta^2}$. Logo, o limite $\lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|} = \lim_{\substack{\alpha \to 0 \\ \beta \to 0}} \frac{1}{\sqrt{\alpha^2 + \beta^2}} \frac{\alpha\beta}{\alpha^2 + \beta^2}$

não existe, já que para as sequências $\left(\alpha_n = \frac{1}{n}\right)$ e $\left(\beta_n = \frac{1}{n}\right)$, que convergem para zero, a sequência $\left(\frac{1}{\sqrt{\alpha_n^2 + \beta_n^2}} \frac{\alpha_n \beta_n}{\alpha_n^2 + \beta_n^2}\right) = \left(\frac{n}{2\sqrt{2}}\right)$ não converge.

Observação 3.11. Seja $U \subset \mathbb{C}$ aberto. Dizemos que uma função complexa $f: U \longrightarrow \mathbb{C}$ é *derivável* no ponto $z = x + iy \in U$, quando existe o limite

$$\lim_{\mathsf{H}\to \mathsf{0}} \frac{\mathsf{f}(z+\mathsf{H})-\mathsf{f}(z)}{\mathsf{H}} = \mathsf{A} \ .$$

Neste caso, A = f'(z) chama-se a *derivada* da função complexa f no ponto z.

A derivabilidade de f no ponto z = x + iy é equivalente a dizer que:

$$f(z + H) = f(z) + A H + r(H),$$

 $\text{ onde } \lim_{H\to 0} \frac{r(H)}{H} = 0.$

Fazendo A=a+ib, H=h+ik e $r=r_1+ir_2$, f é derivável no ponto z=x+iy se, e só se, $f(z+H)=f(z)+(ah-bk)+i(bh+ak)+r_1(H)+ir_2(H)\,, \tag{I}$

onde $\lim_{H\to 0} \frac{r_1(H)}{|H|} = \lim_{H\to 0} \frac{r_2(H)}{|H|} = 0.$

Sejam $u, v : U \longrightarrow \mathbb{R}$ a parte real e a parte imaginária da função f, ou seja, f(z) = u(z) + iv(z).

Em (I), separando a parte real e a parte imaginária, temos que:

•
$$u(x + h, y + k) = u(x, y) + ah - bk + r_1(h, k)$$
, onde $\lim_{h,k \to 0} \frac{r_1(h, k)}{\sqrt{h^2 + k^2}} = 0$,

$$\bullet \ \nu(x+h,y+k) = \nu(x,y) + bh + ak + r_2(h,k) \,, \quad \text{onde } \lim_{h,k\to 0} \frac{r_2(h,k)}{\sqrt{h^2+k^2}} = 0 \,.$$

Assim, se f = u + iv é derivável no ponto z = x + iy, então u e v são diferenciáveis no ponto (x,y) e valem as identidades: $\frac{\partial u}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) = u$ e $\frac{\partial u}{\partial y}(x,y) = -\frac{\partial v}{\partial x}(x,y) = -b$, chamadas equações de Cauchy-Riemann.

Reciprocamente, se $u, v : U \longrightarrow \mathbb{R}$ são funções diferenciáveis no ponto z = (x, y) e satisfazem as equações de Cauchy-Riemann neste ponto, podemos provar, revertendo cada etapa do argumento anterior, que a função complexa f = u + iv é derivável no ponto z = x + iy e que:

$$f'(z) = \frac{\partial u}{\partial x}(z) - i \frac{\partial u}{\partial u}(z) = \frac{\partial v}{\partial u}(z) + i \frac{\partial v}{\partial x}(z).$$

Uma função complexa $f: U \longrightarrow \mathbb{C}$ é *holomorfa* quando possui derivada f'(z) em todos os pontos do aberto U.

Definição 3.3. Seja $U \subset \mathbb{R}^n$ aberto. Dizemos que uma função $f: U \longrightarrow \mathbb{R}$ é de *classe* C^1 quando f possui derivadas parciais $\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x)$ em todos os pontos $x \in U$ e as funções $\frac{\partial f}{\partial x_i}: U \longrightarrow \mathbb{R}, \ i=1,\ldots,n,$ são contínuas.

Mais geralmente, dizemos que uma função $f:U\longrightarrow \mathbb{R}$ é de *classe* C^k , $k\ge 1$, quando ela possui derivadas parciais em todos os pontos de U e as funções $\frac{\partial f}{\partial x_i}:U\longrightarrow \mathbb{R},\ i=1,\ldots,n,$ são de classe C^{k-1} . Para completar a definição indutiva, dizemos que f é de *classe* C^0 quando f é contínua.

Finalmente, dizemos que f é de *classe* C^{∞} quando f é de classe C^k para todo $k \ge 0$.

Então $C^0\supset C^1\supset C^2\supset\ldots\supset C^k\supset\ldots\supset C^\infty$, sendo todas as inclusões estritas (ver *Curso de Análise, Vol. I* de E. Lima, pag. 278, ex. 21).

Teorema 3.2. Se uma função $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ possui derivadas parciais em todos os pontos do aberto U e cada uma delas é contínua no ponto $c \in U$, então f é diferenciável no ponto c.

Prova.

Para simplificar a notação, vamos considerar apenas o caso n = 2.

Sejam
$$c = (a, b)$$
 e $\delta > 0$ tal que $B_M(c, \delta) = (a - \delta, a + \delta) \times (b - \delta, b + \delta) \subset U$.

Seja $\nu=(h,k)$ um vetor tal que $c+\nu\in B_M(c,\delta)\subset U$ e

$$r(v) = r(h,k) = f(a+h,b+k) - f(a,b) - \frac{\partial f}{\partial x}(c)h - \frac{\partial f}{\partial y}(c)k.$$

Reescrevendo, temos:

$$r(\nu) = f(a+h,b+k) - f(a,b+k) + f(a,b+k) - f(a,b) - \frac{\partial f}{\partial x}(c)h - \frac{\partial f}{\partial y}(c)k.$$

Pelo Teorema do Valor Médio para funções reais de uma variável real, existem $\theta_1, \theta_2 \in (0,1)$ tais que:

$$r(v) = \frac{\partial f}{\partial x}(a + \theta_1 h, b + k)h + \frac{\partial f}{\partial y}(a, b + \theta_2 k)k - \frac{\partial f}{\partial x}(c)h - \frac{\partial f}{\partial y}(c)k.$$

De fato, existe $\varepsilon > 0$ tal que $(a + th, b + k), (a, b + tk) \subset U$ para todo $t \in (-\varepsilon, 1 + \varepsilon)$. Como as derivadas parciais da função f existem em todos os pontos de U, as funções reais

$$f_1(t)=f(\alpha+th,b+k)$$
 e $f_2(t)=f(\alpha,b+tk)$ são deriváveis em $(-\epsilon,1+\epsilon)$ e

$$\begin{array}{lll} \bullet & f_1'(t_0) & = & \lim_{t \to 0} \frac{f(\alpha + (t_0 + t)h, b + k) - f(\alpha + t_0h, b + k)}{t} \\ \\ & = & \lim_{t \to 0} h \, \frac{f((\alpha + t_0h, b + k) + ht(1, 0)) - f(\alpha + t_0h, b + k)}{th} \\ \\ & = & h \frac{\partial f}{\partial x}(\alpha + t_0h, b + k) \end{array}$$

$$\begin{split} \bullet & \ f_2'(t_0) & = \ \lim_{t \to 0} \frac{f(a,b+(t_0+t)k) - f(a,b+t_0k)}{t} \\ & = \ \lim_{t \to 0} k \, \frac{f((a,b+t_0k)+kt(0,1)) - f(a,b+t_0k)}{tk} \\ & = \ k \frac{\partial f}{\partial u}(a,b+t_0k) \, . \end{split}$$

Logo,

$$\frac{r(\nu)}{\|\nu\|} = \left(\frac{\partial f}{\partial x}(\alpha + \theta_1 h, b + k) - \frac{\partial f}{\partial x}(\alpha, b)\right) \frac{h}{\sqrt{h^2 + k^2}} + \left(\frac{\partial f}{\partial y}(\alpha, b + \theta_2 k) - \frac{\partial f}{\partial y}(\alpha, b)\right) \frac{k}{\sqrt{h^2 + k^2}} \,.$$

 $\begin{array}{l} \text{Como } \frac{|h|}{\sqrt{h^2+b^2}} \leq 1, \ \frac{|k|}{\sqrt{h^2+b^2}} \leq 1, \ \frac{\partial f}{\partial x} \ e \ \frac{\partial f}{\partial y} \ \text{s\~{ao} cont\'inuas no ponto} \ c = (\alpha,b), \ \text{temos que} \\ \lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|} = 0, \ \text{ou seja}, \ f \ \acute{e} \ \text{diferenci\'avel no ponto} \ c = (\alpha,b). \ \blacksquare \end{array}$

Observação 3.12. Na realidade, para que f seja diferenciável no ponto (a,b) é suficiente que $\frac{\partial f}{\partial x}$ exista numa vizinhança deste ponto, que nele seja contínua e que $\frac{\partial f}{\partial y}(a,b)$ exista.

De fato, escrevendo

$$r(\nu) = f(a+h,b+k) - f(a,b+k) - \frac{\partial f}{\partial x}(a,b)h + f(a,b+k) - f(a,b) - \frac{\partial f}{\partial y}(a,b)k,$$

existe, pelo Teorema do Valor Médio para funções reais de uma variável real, $\theta \in (0,1)$ tal que

$$\frac{r(\nu)}{\|\nu\|} = \left(\frac{\partial f}{\partial x}(\alpha+\theta h,b+k) - \frac{\partial f}{\partial x}(\alpha,b)\right)\frac{h}{\|\nu\|} + \left(\frac{f(\alpha,b+k) - f(\alpha,b)}{k} - \frac{\partial f}{\partial y}(\alpha,b)\right)\frac{k}{\|\nu\|}\,.$$

 $\text{Logo } \lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ e } \frac{k}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ \'e contínua no ponto } (\alpha, b) \text{ e } \frac{h}{\|\nu\|} = 0 \text{, pois } \frac{h}{\|\nu\|} \text{ e } \frac{h}{\|\nu\|} \text{ são limitadas, } \frac{\partial f}{\partial x} \text{ e } \frac{h}{\|\nu\|} \text{ e }$

$$\lim_{k\to 0}\frac{f(\alpha,b+k)-f(\alpha)}{k}=\frac{\partial f}{\partial y}(\alpha,b)\,.$$

• Para funções de $\mathfrak n$ variáveis, a diferenciabilidade de $\mathfrak f$ num ponto é assegurada quando $\mathfrak n-1$ das suas derivadas parciais existem numa vizinhança do ponto, são contínuas neste ponto e a derivada parcial restante apenas exista neste ponto.

Corolário 3.3. Toda função de classe C1 é diferenciável.

Mas a recíproca não é verdadeira.

Exemplo 3.1. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função dada por $f(x) = x^2 \operatorname{sen} \frac{1}{x}$, $x \neq 0$ e f(0) = 0. Então $f'(x) = 2x \operatorname{sen} \frac{1}{x} - \cos \frac{1}{x}$, para $x \neq 0$, e $f'(0) = \lim_{x \to 0} \frac{x^2 \operatorname{sen} \frac{1}{x}}{x} = 0$.

Logo f é diferenciável em \mathbb{R} , mas f não é de classe C^1 , pois f' não é contínua em x=0. \square

Exemplo 3.2. Um polinômio em duas variáveis é uma função $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ dada por

$$f(x,y) = \sum \alpha_{ij} x^i y^j \,.$$

Então f é contínuo em \mathbb{R}^2 e possui derivadas parciais

$$\frac{\partial f}{\partial x} = \sum i \alpha_{ij} x^{i-1} y^j \quad e \quad \frac{\partial f}{\partial y} = \sum j \alpha_{ij} x^i y^{j-1} \,.$$

 $\text{Como } \frac{\partial f}{\partial x} \text{ e } \frac{\partial f}{\partial y} \text{ são polinômios e, portanto, funções contínuas, temos que f \'e de classe } C^1.$

Assim, todo polinômio é de classe C1.

Como
$$\frac{\partial f}{\partial x}$$
 e $\frac{\partial f}{\partial y}$ são polinômios, $\frac{\partial f}{\partial x} \in C^1$ e $\frac{\partial f}{\partial y} \in C^1$. Logo $f \in C^2$.

Podemos provar, usando o argumento acima, que se todo polinômio é de classe C^k , então todo polinômio é de classe C^{k+1} . Assim, concluímos, por indução, que todo polinômio é de classe C^{∞} .

Do mesmo modo, podemos mostrar que todo polinômio $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ de n variáveis

$$f(x) = \sum a_{i_1 \ i_2 \cdots i_n} x_1^{i_1} \cdots x_n^{i_n},$$

é de classe C^{∞} . □

Observação 3.13. A soma f+g e o produto fg de funções de classe C^k são funções de classe C^k .

Este resultado segue do fato análogo já provado para funções reais de uma variável real, ou pode ser provado por indução, primeiro para a soma e depois para o produto.

Corolário 3.4. Sejam $U \subset \mathbb{R}^m$, $V \subset \mathbb{R}^n$ abertos, $f = (f_1, \dots, f_n) : U \longrightarrow \mathbb{R}^n$, tal que $f(U) \subset V$ e cada função coordenada $f_i : U \longrightarrow \mathbb{R}$ é de classe C^k . Se $g : V \longrightarrow \mathbb{R}$ é uma função de classe C^k , então a composta $g \circ f : U \longrightarrow \mathbb{R}$ é de classe C^k .

Prova.

Para k=0, o resultado é verdadeiro. Suponhamos, por indução, que o corolário vale para funções de classe C^{k-1} , $k\geq 1$, e que g, f_i , $i=1,\ldots,n$ são funções de classe C^k .

Então, pelo corolário 3.3, g, f_i , i = 1, ..., n são funções diferenciáveis e, pela Regra da Cadeia:

$$\frac{\partial (g \circ f)}{\partial x_i}(x) = \sum_{i=1}^n \frac{\partial g}{\partial y_i}(f(x)) \frac{\partial f_i}{\partial x_i}(x),$$

para todo $x \in U$ e todo i = 1, ..., m, ou seja, vale a igualdade de funções:

$$\frac{\partial (g \circ f)}{\partial x_i} = \sum_{j=1}^n \left(\frac{\partial g}{\partial y_j} \circ f \right) \cdot \frac{\partial f_j}{\partial x_i}.$$

Como $\frac{\partial g}{\partial y_j}$ e f são de classe C^{k-1} temos, pela hipótese de indução, que $\frac{\partial g}{\partial y_j} \circ f$ é de classe C^{k-1} para todo $j=1,\ldots,n$. Além disso, como $\frac{\partial f_j}{\partial x_i} \in C^{k-1}$, o produto $\left(\frac{\partial g}{\partial y_j} \circ f\right) \cdot \frac{\partial f_j}{\partial x_i}$ é de classe C^{k-1} , para todo $j=1,\ldots,n$, e portanto, a soma $\sum_{i=1}^m \left(\frac{\partial g}{\partial y_j} \circ f\right) \cdot \frac{\partial f_j}{\partial x_i}$ é de classe C^{k-1} .

 $\text{Logo } \frac{\partial (g\circ f)}{\partial x_i}\in C^{k-1} \text{ para todo } i=1,\ldots,m \text{, ou seja, } g\circ f\in C^k. \ \blacksquare$

Observação 3.14. Seja $g:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função de classe C^k , com $g(x)\neq 0$ para todo $x\in U$.

Então a função $\frac{1}{g}$ é de classe C^k , pois $\frac{1}{g}=\rho\circ g$, onde $\rho:\mathbb{R}-\{0\}\longrightarrow\mathbb{R}$, dada por $\rho(x)=\frac{1}{x}$, é de classe $C^\infty.$

Exemplo 3.3. O produto interno $f: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$, $f(x,y) = \sum_{i=1}^n x_i y_i$, é uma função de classe C^{∞} , pois f é um polinômio de 2n variáveis (de grau 2).

Também, a função $g:\mathbb{R}^n\longrightarrow\mathbb{R},\ g(x)=\|x\|^2=\sum_{i=1}^\infty x_i^2,$ por ser um polinômio de n variáveis, é de classe $C^\infty.$

Então a norma $h:\mathbb{R}^n-\{0\}\longrightarrow\mathbb{R},\ h(x)=\|x\|=\sqrt{\sum_{i=1}^nx_i^2}\ \text{ \'e de classe }C^\infty,\ \text{pois }h=\rho\circ g,\ \text{onde}$ $\rho:(0,\infty)\longrightarrow\mathbb{R}\ \text{\'e a função }C^\infty\ \text{dada por }\rho(x)=\sqrt{x}.$

Na origem, a função norma h não possui derivadas parciais, pois:

$$\bullet \lim_{t \to 0^+} \frac{h(0+te_{\mathfrak{i}})-h(0)}{t} = \lim_{t \to 0^+} \frac{|t|}{t} = 1 \,, \qquad e \qquad \bullet \lim_{t \to 0^-} \frac{h(0+te_{\mathfrak{i}})-h(0)}{t} = \lim_{t \to 0^-} \frac{|t|}{t} = -1 \,.$$

• Pode ocorrer que normas $\| \|$ que não provém de um produto interno não sejam diferenciáveis em pontos $x \neq 0$.

Por exemplo, se $\varphi:\mathbb{R}^2\longrightarrow\mathbb{R}$ é a norma da soma $\varphi(x,y)=|x|+|y|$, então não existe $\frac{\partial\varphi}{\partial x}$ nos pontos (0,y) e não existe $\frac{\partial\varphi}{\partial y}$ nos pontos (x,0).

$$\text{De fato, } \lim_{t\to 0^\pm}\frac{\phi(t,y)-\phi(0,y)}{t}=\lim_{t\to 0^\pm}\frac{|t|}{t}=\pm 1 \text{ , } \text{ e } \lim_{t\to 0^\pm}\frac{\phi(x,t)-\phi(x,0)}{t}=\lim_{t\to 0^\pm}\frac{|t|}{t}=\pm 1 \text{ . } \square$$

4 A diferencial de uma função

Definição 4.1. Sejam $U \subset \mathbb{R}^n$ um aberto e $f: U \longrightarrow \mathbb{R}$ uma função diferenciável no ponto a.

A diferencial de f no ponto α é o funcional linear $df(\alpha): \mathbb{R}^n \longrightarrow \mathbb{R}$ dado por

$$df(\alpha)\nu = \frac{\partial f}{\partial \nu}(\alpha) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha)\alpha_i,$$

onde $\nu=(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$.

Então $\left(\frac{\partial f}{\partial x_1}(\alpha) \cdots \frac{\partial f}{\partial x_n}(\alpha)\right)$ é a matriz $1 \times n$ do funcional linear $df(\alpha)$ em relação à base canônica $\{e_1, \dots, e_n\}$ de \mathbb{R}^n .

Quando f é diferenciável em todo ponto de U, podemos definir a aplicação

$$df: U \longrightarrow \mathcal{L}(\mathbb{R}^n; \mathbb{R}) = (\mathbb{R}^n)^*$$

que associa a cada $x \in U$ o funcional df(x), cuja matriz é $\left(\frac{\partial f}{\partial x_1}(x) \cdots \frac{\partial f}{\partial x_n}(x)\right)$.

Identificando o funcional df(x) com sua matriz, temos que: df é uma aplicação contínua \iff cada uma de suas funções coordenadas $\frac{\partial f}{\partial x_i}:U\longrightarrow \mathbb{R}$ é contínua \iff f é C^1 .

Exemplo 4.1. Todo funcional linear $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}$ é diferenciável e $d\varphi(x) = \varphi$, ou seja, $d\varphi(x)v = \varphi(v)$ para quaisquer $x, v \in \mathbb{R}^n$.

De fato, como $\varphi(x)=a_1x_1+\ldots+a_nx_n$, temos $\frac{\partial \varphi}{\partial x_i}(x)=a_i$ para todo $x\in\mathbb{R}^n$ e todo $i=1,\ldots,n$. Logo,

$$d\phi(x)v = \sum_{i=1}^{n} \frac{\partial \phi}{\partial x_i}(x)\alpha_i = \sum_{i=1}^{n} a_i\alpha_i = \phi(v).$$

Notação.

Seja $\pi_i: \mathbb{R}^n \longrightarrow \mathbb{R}$, $\pi_i(x) = x_i$, a projeção sobre a i-ésima coordenada, $i = 1, \ldots, n$. Então $\{\pi_1, \ldots, \pi_n\}$ é a base de $(\mathbb{R}^n)^*$ dual da base canônica.

Fazendo $\pi_i = x_i$, temos, pelo exemplo acima, que

$$dx_i(\alpha)v = d\pi_i(\alpha)v = \pi_i(v) = \alpha_i$$

para todo $v = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$.

Logo, podemos escrever:

$$df(\alpha)\nu = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \, dx_i(\alpha)(\nu) \,, \qquad \text{ou seja,} \qquad df = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \, dx_i \,,$$

se f é diferenciável em todo ponto $a \in U$.

Com a identificação feita acima, temos que $\{dx_1,\ldots,dx_n\}$ é a base de $(\mathbb{R}^n)^*$ dual da base canônica.

Assim, a expressão formal da regra da cadeia (no caso $\mathbb{R} \longrightarrow \mathbb{R}^n \longrightarrow \mathbb{R}$) diz que se cada coordenada x_i é função de um parâmetro real t, então podemos "dividir" ambos os membros da igualdade acima por "dt" e obter:

$$\frac{\mathrm{df}}{\mathrm{dt}} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\mathrm{d}x_i}{\mathrm{dt}}.$$

Teorema 4.1. Sejam $f, g: U \longrightarrow \mathbb{R}$ funções diferenciáveis no ponto $a \in U$. Então:

- (a) $f + g : U \longrightarrow \mathbb{R}$ é diferenciável no ponto $a \in d(f + g)(a) = df(a) + dg(a)$.
- **(b)** $f \cdot g : U \longrightarrow \mathbb{R}$ é diferenciável no ponto $a \in d(f \cdot g)(a) = f(a) dg(a) + g(a) df(a)$.
- (c) Se $g(\alpha) \neq 0$, $\frac{f}{g}$ é diferenciável no ponto α e d $\left(\frac{f}{g}\right)(\alpha) = \frac{g(\alpha)\,df(\alpha) f(\alpha)\,dg(\alpha)}{g(\alpha)^2}$.

Prova.

Como as funções $s,m:\mathbb{R}^2\longrightarrow\mathbb{R},\ q:\mathbb{R}\times(\mathbb{R}-\{0\})\longrightarrow\mathbb{R}$ dadas por s(x,y)=x+y, m(x,y)=xy e $q(x,y)=\frac{x}{y}$ são diferenciáveis, por serem de classe C^∞ , e a função $F:U\longrightarrow\mathbb{R}^2$, F(x)=(f(x),g(x)), tem coordenadas diferenciáveis no ponto a, temos, pela Regra da Cadeia, que as funções $s\circ F=f+g$, $m\circ F=f\cdot g$ e $q\circ F=\frac{f}{g}$ são diferenciáveis no ponto a e, além disso:

$$\begin{array}{lcl} \frac{\partial (f+g)}{\partial x_i}(\alpha) & = & \frac{\partial f}{\partial x_i}(\alpha) + \frac{\partial g}{\partial x_i}(\alpha) \\ \\ \frac{\partial (f\cdot g)}{\partial x_i}(\alpha) & = & g(\alpha)\frac{\partial f}{\partial x_i}(\alpha) + f(\alpha)\frac{\partial g}{\partial x_i}(\alpha) \\ \\ \frac{\partial (f/g)}{\partial x_i}(\alpha) & = & \frac{g(\alpha)\frac{\partial f}{\partial x_i}(\alpha) - f(\alpha)\frac{\partial g}{\partial x_i}(\alpha)}{g(\alpha)^2} \,. \end{array}$$

Assim,

$$\bullet \ d(f+g)(\alpha) = \sum_{i=1}^n \frac{\partial (f+g)}{\partial x_i}(\alpha) \ dx_i = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \ dx_i + \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\alpha) \ dx_i = df(\alpha) + dg(\alpha) \ ;$$

$$\bullet \ d(f \cdot g)(\alpha) = \sum_{i=1}^n \frac{\partial (f \cdot g)}{\partial x_i}(\alpha) \ dx_i = g(\alpha) \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \ dx_i + f(\alpha) \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\alpha) \ dx_i = g(\alpha) \ df(\alpha) + f(\alpha) \ dg(\alpha) \ ;$$

$$\bullet \ d(f/g)(\alpha) = \sum_{i=1}^n \frac{\partial (f/g)}{\partial x_i}(\alpha) \ dx_i = \frac{g(\alpha) \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \ dx_i - f(\alpha) \sum_{i=1}^n \frac{\partial g}{\partial x_i}(\alpha) \ dx_i}{g(\alpha)^2} = \frac{g(\alpha) \ df(\alpha) - f(\alpha) \ dg(\alpha)}{g(\alpha)^2} \ .$$

Teorema 4.2. (do Valor Médio)

Seja $f:U\longrightarrow \mathbb{R}$ uma função diferenciável em todos os pontos do segmento aberto $(\alpha,\alpha+\nu)$ e contínua no segmento fechado $[\alpha,\alpha+\nu]\subset U$. Então existe $\theta\in(0,1)$ tal que

$$f(a+\nu)-f(a)=\frac{\partial f}{\partial \nu}(a+\theta\nu)=df(a+\theta\nu)\,\nu=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(a+\theta\nu)\,\alpha_i\,,$$

onde $v = (\alpha_1, \dots, \alpha_n)$.

Corolário 4.2. Sejam $U \subset \mathbb{R}^n$ aberto convexo e $f: U \longrightarrow \mathbb{R}$ uma função diferenciável. Se $\|df(x)\| \leq M$ para todo $x \in U$, então

$$|f(x) - f(y)| < M ||x - y||$$

para quaisquer $x, y \in U$.

Prova.

Neste corolário, estamos assumindo que

$$\|df(x)\|=\sup\{\left|df(x)\nu\right||\nu\in\mathbb{R}^n\,,\,\|\nu\|=1\}=\sup\left\{\left|\frac{\partial f}{\partial\nu}(x)\right|\,\left|\,\nu\in\mathbb{R}^n\,,\,\|\nu\|=1\right.\right\}.$$

Logo, se $x, y \in U$, o segmento fechado $[x, x + (y - x)] \subset U$, uma vez que U é convexo.

Assim, pelo Teorema do Valor Médio, existe $\theta \in (0, 1)$ tal que

$$f(y) - f(x) = df(x + \theta(y - x)) (y - x),$$

e, portanto,

$$|f(y) - f(x)| = |df(x + \theta(y - x)) (y - x)| \le M ||y - x||.$$

Observação 4.1. Se tomarmos em \mathbb{R}^n a norma euclidiana, ou a norma da soma, ou a norma do máximo, então $\|df(x)\|$ assume, respectivamente, os valores:

$$\sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2}, \quad \sum_{i=1}^n \left|\frac{\partial f}{\partial x_i}(x)\right|, \quad \text{ou} \quad \max_{1 \leq i \leq n} \left\{\left.\left|\frac{\partial f}{\partial x_i}(x)\right|\right.\right\}.$$

De fato, se $\| \|$ é a norma euclidiana, por exemplo, temos que:

$$|df(x)\nu| = \left|\sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) \, \alpha_i \right| \leq \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2} \sqrt{\sum_{i=1}^n \alpha_i^2} \leq \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2},$$

$$\text{para todo } \nu = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \text{ com } \|\nu\| = \sqrt{\sum_{i=1}^n \alpha_i^2} = 1.$$

$$\begin{split} &\text{Logo } \|df(x)\| \leq \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2} \,. \text{ Por outro lado, se } \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2 \neq 0 \text{, podemos tomar o vetor} \\ &\nu = \frac{\left(\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x)\right)}{\sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2}} \,. \end{split}$$

Então, como $\|\nu\|=1$, temos que:

$$\|df(x)\| \ge |df(x)v| = \frac{\displaystyle\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2}{\sqrt{\displaystyle\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2}} = \sqrt{\displaystyle\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2},$$

ou seja,
$$\|df(x)\| \geq \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2}.$$
 Assim, $\|df(x)\| = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}(x)\right)^2}.$

Observação 4.2. Se V não é convexo, uma função $g:V\longrightarrow \mathbb{R}$ pode ser diferenciável, com diferencial dg limitada em V, sem ser Lipschitziana.

Por exemplo, sejam $U = \mathbb{R}^2 - X$, onde $X = \{(x,0) \, | \, x \geq 0\}$, e $V = \{(x,y) \in U \, | \, \sqrt{x^2 + y^2} < 2\}$.

Seja $g = f|_V$, onde $f: U \longrightarrow \mathbb{R}$ é a função definida por $f(x,y) = x^2$ se x > 0 e y > 0 e f(x,y) = 0 se $x \le 0$ ou $y \le 0$.

Então $\frac{\partial f}{\partial y}(x,y)=0$ para todo $(x,y)\in U$; $\frac{\partial f}{\partial x}(x,y)=2x$ se $x>0,\ y>0$; $\frac{\partial f}{\partial x}(x,y)=0$ se $(x,y)\in U-\{(x,y)\in \mathbb{R}^2|x\geq 0\,,\,y>0\}$, pois $f\equiv 0$ neste aberto e, também, $\frac{\partial f}{\partial x}(0,y)=0$ para y>0, uma vez que

Logo f é diferenciável, pois $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em U, ou seja, f é de classe C^1 em U. Além disso, como |x| < 2 para todo $(x,y) \in V$.

$$\|\mathrm{df}(x,y)\| = \sqrt{\left(\frac{\partial f}{\partial x}(x,y)\right)^2 + \left(\frac{\partial f}{\partial y}(x,y)\right)^2} \le 4,$$

para todo $(x, y) \in V$.

Mas, f não é uniformemente contínua em V, pois, para as sequências $z_n = \left(1, \frac{1}{n}\right)$ e $w_n = \left(1, -\frac{1}{n}\right)$ de pontos de V, temos que:

$$z_n - w_n = \left(0, \frac{2}{n}\right) \longrightarrow (0, 0)$$
 e $f(z_n) - f(w_n) = 1 \longrightarrow 1$.

Em particular, f não é Lipschitziana em V.

Observação 4.3. Como consequência do corolário 4.2, temos que se $U \subset \mathbb{R}^n$ é aberto e convexo e $f:U \longrightarrow \mathbb{R}$ é uma função diferenciável com derivadas parciais limitadas em U, então f é uniformemente contínua em U. Em particular, f é a restrição de uma função uniformemente contínua $g:\overline{U} \longrightarrow \mathbb{R}$.

5 O gradiente de uma função diferenciável

O produto interno canônico induz um isomorfismo entre \mathbb{R}^n e seu dual $(\mathbb{R}^n)^*$ dado por:

pois dado $\phi \in (\mathbb{R}^n)^\star$, $\phi = \nu^\star$, onde $\nu = (\phi(e_1), \ldots, \phi(e_n))$, uma vez que $\phi(x_1, \ldots, x_n) = \phi(e_1)x_1 + \ldots + \phi(e_n)x_n \,.$

Além disso, como $v^\star(e_i)=\alpha_i$, $i=1,\ldots,n$, $\left(\alpha_1\ldots\alpha_n\right)$ é a matriz $1\times n$ do funcional v^\star em relação à base canônica.

Definição 5.1. Seja $f: U \longrightarrow \mathbb{R}$ uma função diferenciável no aberto $U \subset \mathbb{R}^n$. O *gradiente de* f *no ponto* $a \in U$ é o vetor grad f(a) que corresponde ao funcional df(a) segundo o isomorfismo acima, ou seja,

$$\langle \operatorname{grad} f(\alpha), \nu \rangle = \operatorname{d} f(\alpha) \nu = \frac{\partial f}{\partial \nu}(\alpha) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \, \alpha_i \,,$$

para todo $\nu = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$.

$$\text{Logo grad}\, f(\alpha) = \bigg(\frac{\partial f}{\partial x_1}(\alpha), \ldots, \frac{\partial f}{\partial x_n}(\alpha)\bigg).$$

Observação 5.1. As coordenadas de grad $f(\alpha)$ em relação à base canônica são iguais às coordenadas de $df(\alpha) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \, dx_i$ em relação à base $\{dx_1, \dots, dx_n\}$ de $(\mathbb{R}^n)^*$, dual da base canônica.

• Veremos agora as *três propriedades* mais importantes do gradiente de uma função diferenciável $f: U \longrightarrow \mathbb{R}$. Para isso, seja $a \in U$ tal que grad $f(a) \neq 0$.

Primeira propriedade. O gradiente aponta para uma direção segundo a qual a função f é crescente.

De fato, se $w = \operatorname{grad} f(a)$, então

$$df(\alpha) w = \frac{\partial f}{\partial w}(\alpha) = \langle \operatorname{grad} f(\alpha), w \rangle = \| \operatorname{grad} f(\alpha) \|^2 > 0.$$

Assim, se $\lambda:(-\epsilon,\epsilon)\longrightarrow U$ é um caminho diferenciável tal que $\lambda(0)=\alpha$ e $\lambda'(0)=$ grad $f(\alpha)$, então

$$(f \circ \lambda)'(0) = df(\lambda(0)) \, \lambda'(0) > 0 \, .$$

Então, se f e λ são de classe C^1 , existe $\varepsilon > 0$ tal que $(f \circ \lambda)'(t) > 0$ para todo $t \in (-\varepsilon, \varepsilon)$, e, portanto, $f \circ \lambda$ é crescente. Isto é, f *cresce na direção do gradiente*.



Fig. 4: Gradiente de f no ponto α

Segunda propriedade. Dentre todas as direções ao longo das quais a função f cresce, a direção do gradiente é a de crescimento mais rápido.

De fato, não se tem $df(\alpha)\nu = \langle \operatorname{grad} f(\alpha), \nu \rangle > 0$ apenas quando $\nu = \operatorname{grad} f(\alpha)$, pois $\langle \operatorname{grad} f(\alpha), \nu \rangle > 0$ para todo ν que faz um ângulo agudo com $\operatorname{grad} f(\alpha)$. Então f cresce ao longo destas direções, mas $\operatorname{grad} f(\alpha)$ é a direção segundo a qual o crescimento de f é o mais rápido.

Ou seja, se
$$\nu$$
 é um vetor tal que $\|\nu\|=\|\operatorname{grad} f(\alpha)\|$, então
$$\frac{\partial f}{\partial \nu}(\alpha) \leq \frac{\partial f}{\partial (\operatorname{grad} f(\alpha))}(\alpha)\,,$$

pois, pela desigualdade de Cauchy-Schwarz,

$$\frac{\partial f}{\partial \nu}(\alpha) = \langle \operatorname{grad} f(\alpha), \nu \rangle \leq \|\operatorname{grad} f(\alpha)\| \, \|\nu\| = \|\operatorname{grad} f(\alpha)\|^2 = \frac{\partial f}{\partial (\operatorname{grad} f(\alpha))}(\alpha) \, .$$

Observe, ainda, que a igualdade ocorre se, e só se, v = grad f(a).

Terceira propriedade. O gradiente de f no ponto α é perpendicular à "superfície" de nível de f que passa por esse ponto.

Dado $c \in \mathbb{R}$, chamamos $f^{-1}(c) = \{x \in U \mid f(x) = c\}$ conjunto de nível de f e se f(x) = c, isto é, $x \in f^{-1}(c)$, dizemos que x está no nível c ou que x tem nível c.

O Teorema da Função Implícita, que provaremos depois, garante que $f^{-1}(c)$ é uma su-

perfície (se $n \ge 3$), ou uma curva (se n = 2), quando grad $f(x) \ne 0$ para todo $x \in f^{-1}(c)$.

Dizer que $w=\operatorname{grad} f(\alpha)$ é perpendicular ao conjunto de nível $f^{-1}(c)$, onde $f(\alpha)=c$, significa que w é perpendicular ao vetor velocidade $\lambda'(0)$ de qualquer caminho diferenciável em t=0, com $\lambda(0)=\alpha$ e $\lambda(t)\in f^{-1}(c)$ para todo $t\in (-\epsilon,\epsilon)$. De fato, como $f(\lambda(t))=c$ para todo $t\in (-\epsilon,\epsilon)$,

$$0 = (f \circ \lambda)'(0) = df(\lambda(0)) \lambda'(0) = \langle grad f(\alpha), \lambda'(0) \rangle.$$

Exemplo 5.1. Sejam f, g, h : $\mathbb{R}^2 \longrightarrow \mathbb{R}$ dadas por: f(x,y) = ax + by, $a^2 + b^2 \neq 0$; $g(x,y) = x^2 + y^2$ e $h(x,y) = x^2 - y^2$.

• As curvas de nível de f são as retas ax+by=c para qualquer $c\in\mathbb{R}$ e grad f(x,y)=(a,b) para todo $(x,y)\in\mathbb{R}^2$. Assim, (a,b) é o vetor normal às retas ax+by=c, e $\{(x,y)\in\mathbb{R}^2\,|\,ax+by>c\}$ é o semi-plano para o qual o vetor (a,b) aponta.

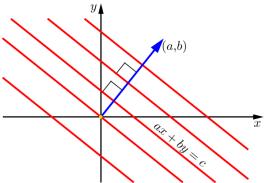


Fig. 5: Gradiente de f

• Seja $c \in \mathbb{R}$ e seja $g^{-1}(c) = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = c\}$ a curva de nível c da função g. Então: $g^{-1}(c) = \varnothing$ se c < 0, $g^{-1}(0) = \{(0,0)\}$, $g^{-1}(c)$ é o círculo de centro na origem e raio \sqrt{c} , e grad f(x,y) = (2x,2y) é um vetor paralelo ao raio e, portanto, perpendicular ao vetor tangente ao círculo naquele ponto.

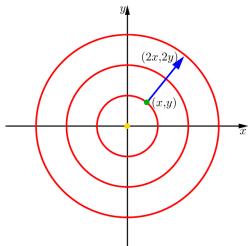


Fig. 6: Gradiente de g

As curvas de nível c da função h são:

$$h^{-1}(0) = \{(x,y) \in \mathbb{R}^2 \mid x^2 = y^2\} = \{(x,y) \in \mathbb{R}^2 \mid x = \pm y\}$$

que consiste de duas retas, x=y e x=-y, perpendiculares que se cortam na origem; ou $h^{-1}(c)=\{(x,y)\in\mathbb{R}^2\,|\,x^2-y^2=c\}$

que é uma hipérbole cuja reta focal é o eixo x, se c>0, e uma hipérbole cuja reta focal é o eixo y, se c<0.

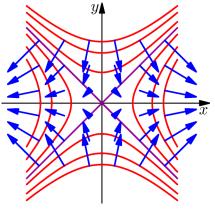


Fig. 7: Gradiente de h

O gradiente de h, grad h(x,y)=(2x,-2y), é perpendicular às curvas de nível e indica a direção de crescimento de h. \Box

• Nos pontos onde o gradiente se anula ocorre uma quebra de regularidade na disposição das curvas de nível. Um ponto onde o gradiente de uma função é o vetor nulo é chamado *singular* ou *crítico*.

Exemplo 5.2. Considere, agora, as funções definidas no espaço \mathbb{R}^3 tridimensional:

$$\mathsf{f}(\mathsf{x},\mathsf{y},z) = \mathsf{a}\mathsf{x} + \mathsf{b}\mathsf{y} + \mathsf{c}z\,; \ \ \mathsf{g}(\mathsf{x},\mathsf{y},z) = \mathsf{x}^2 + \mathsf{y}^2 + \mathsf{z}^2 \quad \ \, \mathsf{e} \quad \ \, \mathsf{h}(\mathsf{x},\mathsf{y},z) = \mathsf{x}^2 + \mathsf{y}^2 - z^2.$$

As superfícies de nível de f são planos de equação ax + by + cz = d, $d \in \mathbb{R}$, todos perpendiculares ao vetor (a, b, c), que é o gradiente de f em qualquer ponto.

A superfície de nível c da função g é o conjunto vazio, se c < 0; consiste apenas da origem, se c = 0 e é a esfera de centro na origem e raio \sqrt{c} , se c > 0, sendo grad g(x, y, z) = 2(x, y, z) perpendicular à superfície de nível c que passa pelo ponto $(x, y, z) \neq (0, 0, 0)$.

A superfície de nível c da função h é o cone de revolução $z^2=x^2+y^2$ de vértice na origem e eixo z, o hiperbolóide de revolução de uma folha $x^2+y^2-z^2=c$ de eixo z, se c>0, e o hiperbolóide de revolução de duas folhas $x^2+y^2-z^2=c$ de eixo z, se c<0, sendo grad h(x,y,z)=2(x,y,-z) perpendicular à superfície de nível que passa por (x,y,z). \square

6 A regra de Leibniz

Teorema 6.1. (Regra de Leibniz – derivação sob o sinal de integral)

Sejam $U \subset \mathbb{R}^n$ aberto e f : $U \times [a,b] \longrightarrow \mathbb{R}$ uma função com as seguintes propriedades:

- (1) Para todo $x \in U$, a função $t \mapsto f(x, t)$ é integrável em [a, b].
- (2) A i-ésima derivada parcial $\frac{\partial f}{\partial x_i}(x,t)$ existe para todo $(x,t) \in U \times [\mathfrak{a},\mathfrak{b}]$ e a função $\frac{\partial f}{\partial x_i}: U \times [\mathfrak{a},\mathfrak{b}] \longrightarrow \mathbb{R}$ é contínua.

Então a função $\phi:U\longrightarrow \mathbb{R}$, dada por $\phi(x)=\int_a^b f(x,t)\,dt$, possui i–ésima derivada parcial em todo ponto $x\in U$, sendo

$$\frac{\partial \varphi}{\partial x_i}(x) = \int_a^b \frac{\partial f}{\partial x_i}(x, t) dt.$$

Ou seja, pode-se derivar sob o sinal de integral, desde que o integrando resultante seja uma função contínua.

Prova.

Dado $x_0 \in U$, existe $\delta_0 > 0$ tal que $[x_0, x_0 + se_i] \subset U$, para todo $s \in \mathbb{R}$ com $|s| < \delta_0$. Então, pelo Teorema do Valor Médio, existe $\theta \in (0, 1)$ tal que:

$$\frac{\varphi(x_0 + se_i) - \varphi(x_0)}{s} - \int_a^b \frac{\partial f}{\partial x_i}(x_0, t) dt = \int_a^b \left[\frac{f(x_0 + se_i, t) - f(x_0, t)}{s} - \frac{\partial f}{\partial x_i}(x_0, t) \right] dt$$
$$= \int_a^b \left[\frac{\partial f}{\partial x_i}(x_0 + \theta se_i, t) - \frac{\partial f}{\partial x_i}(x_0, t) \right] dt.$$

Como $\frac{\partial f}{\partial x_i}: U \times [\alpha, b] \longrightarrow \mathbb{R}$ é contínua, temos, pelo teorema 11.4 do capítulo 1, que dado $\varepsilon > 0$, existe $0 < \delta < \delta_0$ tal que:

$$|s| < \delta \Longrightarrow \left| \frac{\partial f}{\partial x_i}(x_0 + s\theta e_i, t) - \frac{\partial f}{\partial x_i}(x_0, t) \right| < \frac{\varepsilon}{2(b-a)},$$

para todo $t \in [a, b]$. Então, se $0 < |s| < \delta$,

$$\left|\,\frac{\phi(x_0+se_\mathfrak{i})-\phi(x)}{s}-\int_\mathfrak{a}^b\frac{\mathfrak{d} f}{\mathfrak{d} x_\mathfrak{i}}(x_0,t)\,dt\,\right|<\epsilon\,.$$

Provamos, então, que φ possui i-ésima derivada parcial no ponto x_0 e

$$\frac{\partial \varphi}{\partial x_i}(x_0) = \int_a^b \frac{\partial f}{\partial x_i}(x_0, t) dt.$$

Corolário 6.1. Se $f: U \times [a,b] \longrightarrow \mathbb{R}$ é contínua e possui as n derivadas parciais $\frac{\partial f}{\partial x_i}: U \times [a,b] \longrightarrow \mathbb{R}$ contínuas, então $\phi: U \longrightarrow \mathbb{R}$, dada por $\phi(x) = \int_a^b f(x,t) \, dt$, é de classe C^1 .

Prova.

Pelo teorema anterior, ϕ possui as n derivadas parciais e $\frac{\partial \phi}{\partial x_i}(x) = \int_{\alpha}^{b} \frac{\partial f}{\partial x_i}(x,t) \, dt$ para todo $x \in U, i = 1, \ldots, n$. Além disso, como $\frac{\partial f}{\partial x_i} : U \times [\alpha, b] \longrightarrow \mathbb{R}$ é contínua, para todo $i = 1, \ldots, n$, temos, pela aplicação do teorema 11.4 do capítulo 1, que $\frac{\partial \phi}{\partial x_i} : U \longrightarrow \mathbb{R}$ é contínua para todo $i = 1, \ldots, n$.

Observação 6.1. Se $f:[a,b]\times[c,d]\longrightarrow\mathbb{R}$ é uma função contínua, temos, pela aplicação do teorema 11.4 do capítulo 1, que a função $\xi:[a,b]\longrightarrow\mathbb{R},\ \xi(s)=\int_c^d f(s,t)\,dt$, é contínua e, portanto, integrável.

A integral $\int_{a}^{b} \xi(s) ds$ se escreve como:

$$\int_a^b \left[\int_c^d f(s,t) \, dt \right] \, ds \qquad \text{ ou } \qquad \int_a^b ds \int_c^d f(s,t) \, dt \, .$$

Teorema 6.2. (da Inversão da Ordem nas Integrais Repetidas)

Se f : $[a,b] \times [c,d] \longrightarrow \mathbb{R}$ é uma função contínua, então

$$\int_a^b ds \int_c^d f(s,t) dt = \int_c^d dt \int_a^b f(s,t) ds.$$

Prova.

Seja $g:[a,b]\times [c,d]\longrightarrow \mathbb{R}$ definida por $g(x,t)=\int_a^x f(s,t)\,ds$.

Para cada $x \in [a,b]$ fixo, a função $t \longmapsto \int_a^x f(s,t) \, ds$ é contínua e, portanto, integrável. Além disso, $\frac{\partial g}{\partial x}(x,t) = f(x,t)$ para todo $(x,t) \in [a,b] \times [c,d]$, pois o integrando $s \longmapsto f(s,t)$ é contínuo para todo $t \in [c,d]$.

Como $\frac{\partial g}{\partial x}=f:[a,b]\times[c,d]\longrightarrow\mathbb{R}$ é contínua, temos, pela Regra de Leibniz, que a função $\phi:[a,b]\longrightarrow\mathbb{R}$, dada por

$$\varphi(x) = \int_c^d g(x,t) dt = \int_c^d \left(\int_a^x f(s,t) ds \right) dt,$$

é derivável e $\varphi'(x) = \int_c^d \frac{\partial g}{\partial x}(x,t) dt = \int_c^d f(x,t) dt.$

Como $\phi':[a,b]\longrightarrow \mathbb{R}$ é integrável (por ser contínua), temos, pelo Teorema Fundamental do Cálculo, que

$$\varphi(b) - \varphi(a) = \int_a^b \varphi'(s) \, ds = \int_a^b \left(\int_c^d f(s,t) \, dt \right) \, ds.$$

Sendo $\varphi(a) = 0$ e $\varphi(b) = \int_{c}^{d} \left(\int_{a}^{b} f(s,t) ds \right) dt$, obtemos

$$\int_{c}^{d} \left(\int_{a}^{b} f(s,t) ds \right) dt = \int_{a}^{b} \left(\int_{c}^{d} f(s,t) dt \right) ds.$$

é aberto. Então a função $φ: U \longrightarrow \mathbb{R}$, definida por $φ(x) = \int_a^{g(x)} f(x,t) \, dt$, é de classe C^1 e suas derivadas parciais são:

$$\frac{\partial \varphi}{\partial x_i}(x) = \int_{a}^{g(x)} \frac{\partial f}{\partial x_i}(x,t) dt + \frac{\partial g}{\partial x_i}(x) f(x,g(x)),$$

para todo $x \in U$.

Prova.

Seja $\xi: U \times [a,b] \longrightarrow \mathbb{R}$ a função dada por $\xi(x,u) = \int_a^u f(x,t) \, dt$. Então, como a função $t \longmapsto f(x,t)$ é contínua, $\frac{\partial \xi}{\partial u}(x,u) = f(x,u)$ para todo $(x,u) \in U \times [a,b]$.

Além disso, pela Regra de Leibniz, $\frac{\partial \xi}{\partial x_i}(x,u) = \int_a^u \frac{\partial f}{\partial x_i}(x,t) \, dt$.

Afirmação: $\frac{\partial \xi}{\partial x_i}: U \times [\mathfrak{a},\mathfrak{b}] \longrightarrow \mathbb{R}$ é contínua, para $i=1,\ldots,n$.

De fato, como $\frac{\partial f}{\partial x_i}: U \times [a,b] \longrightarrow \mathbb{R}$ é contínua, temos, pelo teorema 11.4 do capítulo 1, que dados $x_0 \in U$, $u_0 \in [a,b]$ e $\epsilon > 0$, existe $\delta > 0$ tal que

$$\|x-x_0\|<\delta\Longrightarrow \left|\frac{\partial f}{\partial x_i}(x,t)-\frac{\partial f}{\partial x_i}(x_0,t)\right|<\epsilon',$$

para todo $t \in [\mathfrak{a},\mathfrak{b}]$, onde $\epsilon' = \frac{\epsilon}{2}$ se $\mathfrak{u}_0 = \mathfrak{a}$ e $\epsilon' = \frac{\epsilon}{2(\mathfrak{u}_0 - \mathfrak{a})}$ se $\mathfrak{u}_0 \neq \mathfrak{a}$.

$$\begin{split} &\text{Sendo } t \longmapsto \frac{\partial f}{\partial x_i}(x_0,t) \text{ continua no compacto } [\alpha,b], \text{ existe } M>0 \text{ tal que } \left|\frac{\partial f}{\partial x_i}(x_0,t)\right| \leq M \text{ para todo } t \in [\alpha,b]. \text{ Assim, } \left|\frac{\partial f}{\partial x_i}(x,t)\right| \leq N = \epsilon' + M, \text{ para todo } t \in [\alpha,b] \text{ e } x \in B(x_0,\delta). \end{split}$$

Então, se $|u-u_0|<\frac{\varepsilon}{2N}$ e $||x-x_0||<\delta$,

$$\begin{split} \left| \frac{\partial \xi}{\partial x_i}(x,u) - \frac{\partial \xi}{\partial x_i}(x_0,u_0) \right| &= \left| \int_a^u \frac{\partial f}{\partial x_i}(x,t) \, dt - \int_a^{u_0} \frac{\partial f}{\partial x_i}(x_0,t) \, dt \right| \\ &\leq \left| \int_a^{u_0} \frac{\partial f}{\partial x_i}(x,t) \, dt - \int_a^{u_0} \frac{\partial f}{\partial x_i}(x_0,t) \, dt \right| + \left| \int_{u_0}^u \frac{\partial f}{\partial x_i}(x,t) \, dt \right| \\ &\leq \epsilon' |u_0 - a| + N \, |u_0 - u| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \, . \end{split}$$

Logo ξ é de classe C^1 , pois $\frac{\partial \xi}{\partial u}=f$ e $\frac{\partial \xi}{\partial x_i},$ $i=1,\ldots,n$ são contínuas.

Sendo g e ξ são de classe C^1 e, portanto, diferenciáveis, temos, pela Regra da Cadeia, que a função composta $\phi(x) = \xi(x, g(x))$ é diferenciável e, para todo $i = 1, \dots, n$,

$$\frac{\partial \phi}{\partial x_i}(x) = \frac{\partial \xi}{\partial x_i}(x,g(x)) + \frac{\partial \xi}{\partial u}(x,g(x)) \frac{\partial g}{\partial x_i}(x) = \int_{\alpha}^{g(x)} \frac{\partial f}{\partial x_i}(x,t) \, dt + \frac{\partial g}{\partial x_i}(x) \, f(x,g(x)) \, .$$

Logo $\frac{\partial \phi}{\partial x_i}$ é contínua para todo $i=1,\ldots,n,$ ou seja, ϕ é de classe C^1 .

Observação 6.2. De modo análogo, podemos provar que se $f: U \times [a,b] \longrightarrow \mathbb{R}$ satisfaz as hipóteses do corolário acima e $g,h:U \longrightarrow [a,b]$ são de classe C^1 , então as funções

$$\psi(x) = \int_{g(x)}^b f(x,t) \, dt \,, \qquad e \qquad \lambda(x) = \int_{g(x)}^{h(x)} f(x,t) \, dt \,,$$

são de classe C1 e

$$\bullet \frac{\partial \psi}{\partial x_i}(x) = \int_{g(x)}^b \frac{\partial f}{\partial x_i}(x,t) dt - \frac{\partial g}{\partial x_i}(x) f(x,g(x));$$

$$\bullet \frac{\partial \lambda}{\partial x_i}(x) = \int_{g(x)}^{h(x)} \frac{\partial f}{\partial x_i}(x,t) dt + \frac{\partial h}{\partial x_i}(x) f(x,h(x)) - \frac{\partial g}{\partial x_i}(x) f(x,g(x)),$$

$$\text{uma vez que,} \quad \int_a^b - \int_a^{g(x)} = \int_{g(x)}^b, \quad e \quad \int_a^b - \int_a^{g(x)} - \int_{h(x)}^b = \int_{g(x)}^{h(x)}.$$

Observação 6.3. Seja $f: I \longrightarrow \mathbb{R}$ uma função contínua definida no intervalo I, com $0 \in I$.

Seja $F_0 = f$ e $F_n : I \longrightarrow \mathbb{R}$, $n \ge 1$, definida por

$$F_n(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt.$$

Então F_n é de classe C^n , $F_n(0)=F_n'(0)=\ldots=F_n^{(n-1)}(0)=0$ e $F_n^{(n)}(x)=f(x)$ para todo $x\in I$.

De fato, para n=1, F_1 é de classe C^1 , $F_1(0)=0$ e $F_1'(x)=f(x)$ para todo $x\in I$.

Suponhamos o resultado válido para n-1, $n-1\geq 1$. Sejam as funções $G:I\times I\longrightarrow \mathbb{R}$ e $g:I\longrightarrow I$ dadas por

$$G(x,t) = \frac{(x-t)^{n-1}}{(n-1)!} f(t), \quad e \quad g(x) = x.$$

Então $F_n(0)=0$ e, pelo corolário acima, F_n é de classe C^1 e

$$F'_n(x) = \int_0^x \frac{(x-t)^{n-2}}{(n-2)!} f(t) dt + G(x,x) g'(x) = \int_0^x \frac{(x-t)^{n-2}}{(n-2)!} f(t) dt = F_{n-1}(x),$$

pois G(x, x) = 0.

Como, por indução, F_{n-1} é de classe C^{n-1} e $F_{n-1}(0) = \ldots = F_{n-1}^{(n-2)}(0) = 0$ e $F_{n-1}^{(n-1)}(x) = f(x)$, temos que F_n é de classe C^n , $F_n(0) = F_n'(0) = \ldots = F_n^{(n-1)}(0) = 0$ e $F_n^{(n)}(x) = f(x)$ para todo $x \in I$.

7 O Teorema de Schwarz

Definição 7.1. Seja $f:U\longrightarrow \mathbb{R}$ uma função diferenciável no aberto $U\subset \mathbb{R}^n$. Se as derivadas parciais $\frac{\partial f}{\partial x_i}:U\longrightarrow \mathbb{R},\ i=1,\ldots,n$, são diferenciáveis num ponto $\alpha\in U$, dizemos que f é *duas vezes diferenciável no ponto* α . Neste caso, existem as *derivadas parciais de segunda ordem*

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (\alpha) = \frac{\partial^2 f}{\partial x_j \partial x_i} (\alpha),$$

para todo i, j = 1, ..., n.

Se $f:U\longrightarrow \mathbb{R}$ é duas vezes diferenciável em U, ficam definidas n^2 funções

$$\frac{\partial^2 f}{\partial x_i\,\partial x_i}:U\longrightarrow \mathbb{R}\,,\quad 1\le i,j\le n\,.$$

Se todas estas funções são diferenciáveis num ponto $a \in U$, dizemos que f é *três vezes* diferenciável nesse ponto. E assim por diante.

Observação 7.1. Já sabemos que se $f \in C^1$, então f é diferenciável.

Suponhamos, por indução, que se uma função é de classe C^k , então ela é k-vezes diferenciável.

Seja $f \in C^{k+1}$. Então suas derivadas parciais $\frac{\partial f}{\partial x_i}$, $i=1,\dots,n$, são de classe C^k .

Logo, por indução, $\frac{\partial f}{\partial x_i}$, $i=1,\ldots,n$, são k-vezes diferenciáveis, e, portanto, f é (k+1)-vezes diferenciável.

Cabe, então, determinar sob quais hipóteses a ordem em que são tomadas as derivadas parciais repetidas não influi no resultado final.

Teorema 7.1. (de Schwarz)

Se $f: U \longrightarrow \mathbb{R}$ é duas vezes diferenciável num ponto $c \in U \subset \mathbb{R}^n$, então

$$\frac{\partial^2 f}{\partial x_i \, \partial x_j}(c) = \frac{\partial^2 f}{\partial x_j \, \partial x_i}(c) \, \text{,}$$

para quaisquer $1 \le i, j \le n$.

Prova.

Vamos supor, para simplificar a notação, que $U\subset\mathbb{R}^2$ e c=(a,b). Devemos, então, provar que $\frac{\partial^2 f}{\partial x\,\partial u}(a,b)=\frac{\partial^2 f}{\partial u\,\partial x}(a,b)$.

Seja $\varepsilon > 0$ tal que $(a - \varepsilon, a + \varepsilon) \times (b - \varepsilon, b + \varepsilon) \subset U$. Para todo $t \in (-\varepsilon, \varepsilon)$ e $x \in (a - \varepsilon, a + \varepsilon)$, sejam:

•
$$\varphi(t) = f(a+t,b+t) - f(a+t,b) - f(a,b+t) + f(a,b)$$
.

•
$$\xi(x) = f(x, b + t) - f(x, b)$$
.

Então $\phi(t)=\xi(\alpha+t)-\xi(\alpha)$. Pelo Teorema do Valor Médio para funções de uma variável real, existe $\theta\in(0,1)$ tal que $\phi(t)=\xi'(\alpha+\theta t)t$, ou seja,

$$\varphi(t) = \left(\frac{\partial f}{\partial x}(\alpha + \theta t, b + t) - \frac{\partial f}{\partial x}(\alpha + \theta t, b)\right) t.$$

Como a função $\frac{\partial f}{\partial x}:U\longrightarrow \mathbb{R}$ é diferenciável no ponto $c=(\mathfrak{a},\mathfrak{b})$ temos que:

$$\bullet \ \frac{\partial f}{\partial x}(\alpha+\theta t,b+t) = \frac{\partial f}{\partial x}(\alpha,b) + \frac{\partial^2 f}{\partial x^2}(\alpha,b)\theta t + \frac{\partial^2 f}{\partial y \, \partial x}(\alpha,b)t + \rho_1 \, t \, , \ \ \text{com} \ \ \lim_{t\to 0} \rho_1 = 0 \, .$$

е

$$\bullet \ \frac{\partial f}{\partial x}(\alpha+\theta t,b) = \frac{\partial f}{\partial x}(\alpha,b) + \frac{\partial^2 f}{\partial x^2}(\alpha,b)\theta t + \rho_2 t \,, \ \ \text{com} \ \ \lim_{t\to 0} \rho_2 = 0.$$

Logo
$$\varphi(t) = \frac{\partial^2 f}{\partial y \partial x}(a, b)t^2 + (\rho_1 - \rho_2)t^2$$
, e, portanto,

$$\lim_{t \to 0} \frac{\varphi(t)}{t^2} = \frac{\partial^2 f}{\partial y \, \partial x}(a, b). \tag{I}$$

Seja, agora, $\eta(y)=f(a+t,y)-f(a,y)$. Então $\phi(t)=\eta(b+t)-\eta(b)$. Pelo teorema do Valor Médio, existe $\theta\in(0,1)$ tal que $\phi(t)=\eta'(b+\theta t)$ t, ou seja,

$$\varphi(t) = \left(\frac{\partial f}{\partial y}(\alpha + t, b + \theta t) - \frac{\partial f}{\partial y}(\alpha, b + \theta t)\right) t.$$

Como a função $\frac{\partial f}{\partial y}:U\longrightarrow \mathbb{R}$ é diferenciável no ponto $c=(\mathfrak{a},\mathfrak{b}),$ temos que:

$$\bullet \ \frac{\partial f}{\partial y}(\alpha+t,b+\theta\,t) = \frac{\partial f}{\partial y}(\alpha,b) + \frac{\partial^2 f}{\partial x\,\partial y}(\alpha,b)t + \frac{\partial^2 f}{\partial y^2}(\alpha,b)\theta t + \rho_3 t\,, \ \ \text{com} \ \ \lim_{t\to 0}\rho_3 = 0\,,$$

e

$$\bullet \ \frac{\partial f}{\partial y}(\alpha,b+\theta t) = \frac{\partial f}{\partial y}(\alpha,b) + \frac{\partial^2 f}{\partial^2 y}(\alpha,b)\theta t + \rho_4 t \ , \ \ \text{com} \ \ \lim_{t\to 0} \rho_4 = 0.$$

Logo
$$\varphi(t)=\left[\frac{\partial^2 f}{\partial x \partial y}(\alpha,b)+(\rho_3-\rho_4)\right]\,t^2$$
 , e, portanto,

$$\lim_{t\to 0} \frac{\varphi(t)}{t^2} = \frac{\partial^2 f}{\partial x \, \partial y}(\alpha, b) \,. \tag{II}$$

Assim, por (I) e (II),
$$\frac{\partial^2 f}{\partial y \, \partial x}(\alpha, b) = \frac{\partial^2 f}{\partial x \, \partial y}(\alpha, b)$$
.

Corolário 7.1. Se $f: U \longrightarrow \mathbb{R}$ é de classe C^2 no aberto $U \subset \mathbb{R}^n$, então $\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$ para todo $x \in U$ e para todo $1 \le i, j \le n$.

Exemplo 7.1. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função dada por $f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$, se $(x,y) \neq (0,0)$, e f(0,0) = 0.

A função f é de classe C^{∞} em $\mathbb{R}^2 - \{(0,0)\}$. Além disso, temos que:

•
$$\frac{\partial f}{\partial x}(x,0) = \lim_{t\to 0} \frac{f(x+t,0) - f(x,0)}{t} = 0, \ x \in \mathbb{R};$$

•
$$\frac{\partial^2 f}{\partial x^2}(0,0) = \lim_{t \to 0} \frac{\frac{\partial f}{\partial x}(t,0) - \frac{\partial f}{\partial x}(0,0)}{t} = 0$$
;

$$\bullet \ \frac{\partial f}{\partial y}(0,y) = \lim_{t \to 0} \frac{f(0,y+t) - f(0,y)}{t} = 0 \,, \ y \in \mathbb{R} \,;$$

•
$$\frac{\partial^2 f}{\partial u^2}(0,0) = \lim_{t \to 0} \frac{\frac{\partial f}{\partial y}(0,t) - \frac{\partial f}{\partial y}(0,0)}{t} = 0$$
;

$$\bullet \ \frac{\partial f}{\partial x}(0,y) = \lim_{t \to 0} \frac{f(t,y) - f(0,y)}{t} = \lim_{t \to 0} \frac{ty(t^2 - y^2)}{t(t^2 + y^2)} = -y \ , \ \ y \in \mathbb{R} \ ;$$

•
$$\frac{\partial^2 f}{\partial u \partial x}(0,0) = \lim_{t \to 0} \frac{\frac{\partial f}{\partial x}(0,t) - \frac{\partial f}{\partial x}(0,0)}{t} = \lim_{t \to 0} \frac{-t}{t} = -1;$$

$$\bullet \ \frac{\partial f}{\partial y}(x,0) = \lim_{t \to 0} \frac{f(x,t) - f(x,0)}{t} = \lim_{t \to 0} \frac{xt(x^2 - t^2)}{t(x^2 + t^2)} = x \,, \ \ x \in \mathbb{R} \,;$$

$$\bullet \frac{\partial^2 f}{\partial x \, \partial y}(0,0) = \lim_{t \to 0} \frac{\frac{\partial f}{\partial y}(t,0) - \frac{\partial f}{\partial y}(0,0)}{t} = \lim_{t \to 0} \frac{t}{t} = 1.$$

Logo f possui derivadas parciais de segunda ordem em todos os pontos do plano, mas $\frac{\partial^2 f}{\partial x \ \partial u}(0,0) \neq \frac{\partial^2 f}{\partial u \ \partial x}(0,0) \ .$

$$\frac{\partial^2 f}{\partial x, \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$$

Pode-se verificar também que $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ são contínuas em \mathbb{R}^2 , ou seja, f é de classe C^1 em \mathbb{R}^2 , mas $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ não são diferenciáveis na origem. Logo f é diferenciável na origem, mas não é duas-vezes diferenciável na origem.

Além disso, apesar das derivadas de segunda ordem $\frac{\partial^2 f}{\partial x \partial u}$ e $\frac{\partial^2 f}{\partial u \partial x}$ existirem em todos os pontos do plano, elas não são contínuas na origem.

De fato, como para $(x,y) \neq (0,0)$,

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= \frac{(y(x^2-y^2)+xy\,2x)(x^2+y^2)-2x\,xy(x^2-y^2)}{(x^2+y^2)^2} \\ &= \frac{((3x^2y-y^3))(x^2+y^2)-2x^2y(x^2-y^2)}{(x^2+y^2)^2} \\ &= \frac{x^4y-y^5+4x^2y^3}{(x^2+y^2)^2}\,; \\ \frac{\partial^2 f}{\partial y\,\partial x}(x,y) &= \frac{(x^4-5y^4+12x^2y^2)(x^2+y^2)^2-(x^4y-y^5+4x^2y^3)2(x^2+y^2)2y}{(x^2+y^2)^4} \\ &= \frac{(x^4-5y^4+12x^2y^2)(x^2+y^2)-4y(x^4y-y^5+4x^2y^3)}{(x^2+y^2)^3}\,, \end{split}$$

$$\text{temos que } \frac{\partial^2 f}{\partial y \, \partial x}(t,t) = \frac{8t^4 \cdot 2t^2 - 16t^6}{8t^6} = 0 \ \text{ e, portanto, } \lim_{t \to 0} \frac{\partial^2 f}{\partial y \, \partial x}(t,t) = 0 \neq \frac{\partial^2 f}{\partial y \, \partial x}(0,0) = -1 \, .$$

Como f é de classe C^{∞} em \mathbb{R}^2 — $\{(0,0)\}$, e, portanto, duas vezes diferenciável em todos os pontos $(x,y) \neq (0,0)$, temos que $\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$ para todo $(x,y) \neq (0,0)$.

$$\text{Logo} \lim_{t\to 0} \frac{\partial^2 f}{\partial x\,\partial y}(t,t) = 0 \neq \frac{\partial^2 f}{\partial x\,\partial y}(0,0) = 1 \,.\,\, \square$$

Daremos, agora, outra versão do Teorema de Schwarz que decorre da Regra de Leibniz.

Teorema 7.2. Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função tal que existem $\frac{\partial f}{\partial x_i}$ e $\frac{\partial^2 f}{\partial x_i \partial x_j}$ em todos os pontos de U, e as funções $\frac{\partial f}{\partial x_j}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}: U \longrightarrow \mathbb{R}$ são contínuas. Então, a derivada $\frac{\partial^2 f}{\partial x_j \partial x_i}$ existe em todos os pontos de U e $\frac{\partial^2 f}{\partial x_j \partial x_i} \equiv \frac{\partial^2 f}{\partial x_i \partial x_j}$.

Prova.

Vamos supor n = 2 para simplificar a notação.

Dado $(x_0, y_0) \in U$, existe $\varepsilon > 0$ tal que $I \times J \subset U$, onde $I = (x_0 - \varepsilon, x_0 + \varepsilon)$ e $J = (y_0 - \varepsilon, y_0 + \varepsilon)$. Seja $b \in J$. Pelo Teorema Fundamental do Cálculo, temos que

$$f(x,y) = f(x,b) + \int_{b}^{y} \frac{\partial f}{\partial y}(x,t) dt,$$

para todo $(x,y) \in I \times J$, uma vez que $\frac{\partial f}{\partial y}$ é contínua, e, portanto, integrável.

Como $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x \partial y}$: $I \times J \longrightarrow \mathbb{R}$ são contínuas, por hipótese, temos, pela Regra de Leibniz, que:

$$\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial x}(x,b) + \int_{b}^{y} \frac{\partial^{2} f}{\partial x \, \partial y}(x,t) \, dt.$$

Logo, como o integrando $\frac{\partial^2 f}{\partial x \, \partial y}$ é contínuo, temos, também, que a função $\int_b^y \frac{\partial^2 f}{\partial x \, \partial y}(x,t) \, dt$ é derivável em relação a y e

$$\frac{\partial}{\partial y} \left(\int_b^y \frac{\partial^2 f}{\partial x \, \partial y}(x, t) \, dt \right) = \frac{\partial^2 f}{\partial x \, \partial y}(x, y) \, .$$

Assim, $\frac{\partial f}{\partial x}$ possui derivada em relação a y e $\frac{\partial^2 f}{\partial y \, \partial x}(x,y) = \frac{\partial^2 f}{\partial x \, \partial y}(x,y)$ para todo $(x,y) \in I \times J$.

Observação 7.2. Seja $f:U\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ uma função três vezes diferenciável. Então as seis derivadas mistas de terceira ordem satisfazem:

$$\frac{\partial^3 f}{\partial x \, \partial x \, \partial y} = \frac{\partial^3 f}{\partial x \, \partial y \, \partial x} = \frac{\partial^3 f}{\partial y \, \partial x \, \partial x} \quad \mathbf{e} \quad \frac{\partial^3 f}{\partial y \, \partial y \, \partial x} = \frac{\partial^3 f}{\partial y \, \partial x \, \partial y} = \frac{\partial^3 f}{\partial x \, \partial y \, \partial y} \, .$$

De fato, pelo Teorema de Schwarz,

$$\frac{\partial^3 f}{\partial x \, \partial x \, \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial x \, \partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial y \, \partial x} \right) = \frac{\partial^3 f}{\partial x \, \partial y \, \partial x},$$

e, fazendo $g = \frac{\partial f}{\partial x}$, temos que

$$\frac{\partial^3 f}{\partial x \, \partial y \, \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \right) = \frac{\partial^2 g}{\partial x \, \partial y} = \frac{\partial^2 g}{\partial y \, \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \right) = \frac{\partial^3 f}{\partial y \, \partial x \, \partial x},$$

uma vez que f e q são duas vezes diferenciáveis.

Analogamente, podemos provar as outras três igualdades acima.

No caso geral, se $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ é uma função $\mathfrak{p}-\text{vezes}$ diferenciável no aberto U, então para toda sequência de inteiros não-negativos i_1,\ldots,i_n , com $i_1+\ldots+i_n=\alpha\leq\mathfrak{p}$, a derivada de ordem $\alpha,\frac{\vartheta^\alpha}{\vartheta x_1^{i_1}\ldots\vartheta x_n^{i_n}}$, que consiste em derivar i_1 vezes em relação à variável x_1,\ldots,i_n vezes em relação à variável x_n , não depende da ordem em que essas derivações foram efetuadas.

Para demonstrar o caso geral, basta sabermos que podemos trocar a ordem de duas derivadas sucessivas e que qualquer mudança de ordem numa sequência finita pode ser obtida por transposições sucessivas entre dois termos consecutivos da sequência.

8 Fórmula de Taylor; pontos críticos.

Seja $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ uma função p-vezes diferenciável no ponto α . Para cada vetor $\nu=(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n$, escrevemos:

$$\begin{split} df(\alpha) \, \nu &= \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\alpha) \alpha_i; \\ d^2 f(\alpha) \, \nu^2 &= \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \, \partial x_j}(\alpha) \alpha_i \alpha_j; \\ &\vdots &\vdots \\ d^p f(\alpha) \, \nu^p &= \sum_{i_1,\dots,i_p=1}^n \frac{\partial^p f}{\partial x_{i_1} \dots \partial x_{i_p}}(\alpha) \alpha_{i_1} \dots \alpha_{i_p}; \end{split}$$

Para cada p > 0, a forma $d^p f(a) : \mathbb{R}^n \longrightarrow \mathbb{R}$ chama-se p- $\acute{e}sima$ diferencial da função f no ponto a.

Observação 8.1. $df^p(a)(tv)^p = t^p d^p f(a) v^p$, ou seja, $df^p(a)$ é um polinômio homogêneo de grau p nas coordenadas de v.

Observação 8.2. Usando a notação acima, a Regra da Cadeia enuncia-se do seguinte modo: Seja $f=(f_1,\ldots,f_n):U\subset\mathbb{R}^m\longrightarrow\mathbb{R}^n$ uma aplicação tal que $f_i:U\longrightarrow\mathbb{R}$ é diferenciável em a

para todo $i=1,\ldots,n$, e seja $g:V\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ diferenciável em $f(\alpha)=b$, com $f(U)\subset V$. Então $g\circ f:U\longrightarrow\mathbb{R}$ é diferenciável em α e, para todo $\nu\in\mathbb{R}^n$,

$$d(g\circ f)(a)\nu=dg(f(a))\cdot (df_1(a)\nu,\ldots,df_n(a)\nu)=dg(f(a))\,df(a)\nu\text{,}$$

De fato,

$$\begin{split} d(g \circ f)(\alpha) \nu &= \sum_{i=1}^m \frac{\partial (g \circ f)}{\partial x_i}(\alpha) \, \alpha_i = \sum_{i=1}^m \left(\sum_{k=1}^n \frac{\partial g}{\partial y_k}(f(\alpha)) \, \frac{\partial f_k}{\partial x_i}(\alpha) \right) \, \alpha_i \\ &= \sum_{k=1}^n \sum_{i=1}^m \frac{\partial g}{\partial y_k}(f(\alpha)) \, \frac{\partial f_k}{\partial x_i}(\alpha) \, \alpha_i = \sum_{k=1}^m \frac{\partial g}{\partial y_k}(f(\alpha)) \, df_k(\alpha) \nu \\ &= dg(f(\alpha))(df_1(\alpha) \nu, \ldots, df_n(\alpha) \nu) \, . \end{split}$$

Teorema 8.1. (Fórmula de Taylor com resto de Lagrange)

Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função de classe C^p , (p+1)-vezes diferenciável no segmento aberto $(\alpha, \alpha + \nu)$, com $[\alpha, \alpha + \nu] \subset U$. Então existe $\theta \in (0, 1)$ tal que:

$$r_p(v) = \frac{1}{(p+1)!} df^{(p+1)} (a + \theta v) v^{p+1},$$

onde $r_p(v)$ é dado pela igualdade:

$$f(a + v) = f(a) + df(a)v + \frac{1}{2!} d^2f(a)v^2 + \ldots + \frac{1}{p!} d^pf(a)v^p + r_p(v).$$

Prova.

Seja $\epsilon>0$ tal que $\alpha+t\nu\in U$ para todo $t\in (-\epsilon,1+\epsilon)$, e seja $\lambda:(-\epsilon,1+\epsilon)\longrightarrow \mathbb{R}^n$ o caminho C^∞ dado por $\lambda(t)=\alpha+t\nu$. Então a função $\phi=f\circ\lambda:(-\epsilon,1+\epsilon)\longrightarrow \mathbb{R}$ é de classe C^p em $(-\epsilon,1+\epsilon)$ e é (p+1)-vezes diferenciável em (0,1).

Logo, pela Fórmula de Taylor com resto de Lagrange para uma função real de uma variável real, existe $\theta \in (0,1)$, tal que

$$\varphi(1) = \varphi(0) + \varphi'(0) + \frac{\varphi''(0)}{2!} + \ldots + \frac{\varphi^{(p)}(0)}{p!} + r_p,$$

onde
$$r_p = \frac{\phi^{(p+1)}(\theta)}{(p+1)!}$$
 . (I)

Afirmação: $\varphi^{(i)}(t) = d^{(i)}f(\alpha + t\nu)\nu^i$, $1 \le i \le p+1$, $t \in (0,1)$.

De fato.

$$\phi'(t) = \frac{\partial f}{\partial \nu}(\alpha + t\nu) = df(\alpha + t\nu)\nu = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha + t\nu)\alpha_i.$$

Suponhamos, por indução, o resultado válido para uma função p-vezes diferenciável.

Seja $f:U\longrightarrow \mathbb{R}$ uma função (p+1)-vezes diferenciável em $(a,a+\nu)$. Então $\frac{\partial f}{\partial x_i}:U\longrightarrow \mathbb{R}$ é p-vezes diferenciável, para todo $i=1,\ldots,n$.

Portanto, pela hipótese de indução, $\lambda_j^{(i)}(t)=d^i\left(\frac{\partial f}{\partial x_j}\right)(\alpha+t\nu)\nu^i$, $i=1,\ldots,p$, onde $\lambda_j(t)=\frac{\partial f}{\partial x_j}(\alpha+t\nu)$. Assim,

$$\begin{split} \phi^{(k+1)}(t) &= \sum_{j=1}^n \lambda_j^{(k)}(t) \alpha_j = \sum_{j=1}^n \left(d^k \left(\frac{\partial f}{\partial x_j} \right) (a + t \nu) \nu^k \right) \alpha_j \\ &= \sum_{j=1}^n \left(\sum_{j_1, \dots, j_k = 1}^n \frac{\partial^k \left(\frac{\partial f}{\partial x_j} \right)}{\partial x_{j_1} \dots \partial x_{j_k}} (a + t \nu) \alpha_{j_1} \dots \alpha_{j_k} \right) \alpha_j \\ &= \sum_{j, j_1, \dots, j_k = 1}^n \frac{\partial^{k+1} f}{\partial x_{j_1} \dots \partial x_{j_k} \partial x_j} (a + t \nu) \alpha_{j_1} \dots \alpha_{j_k} \alpha_j \\ &= d^{k+1} f(a + t \nu) \nu^{k+1} \end{split}$$

para todo k = 1, ..., p e todo $v \in \mathbb{R}^n$.

• Como $\varphi(1)=f(\alpha+\nu)$, $\varphi(0)=f(\alpha)$, $\varphi^{(i)}(0)=d^if(\alpha)\nu^i$ e $\varphi^{p+1}(\theta)=df^{(p+1)}(\alpha+\theta\nu)\nu^{p+1}$, temos, por (I), que a fórmula de Taylor com resto de Lagrange também é válida para funções reais de n-variáveis.

Teorema 8.2. (Fórmula de Taylor com resto integral)

Se f : $U \longrightarrow \mathbb{R}$ é uma função de classe C^{p+1} e $[\alpha, \alpha + \nu] \subset U$, então

$$r_p(\nu) = \frac{1}{p!} \int_0^1 (1-t)^p d^{p+1} f(a+t\nu) \nu^{p+1} dt.$$

Prova.

Como $\phi=f\circ\lambda$ é de classe C^{p+1} em $(-\epsilon,1+\epsilon)$, temos, pela Fórmula de Taylor com resto integral para funções reais de uma variável real, que

$$\varphi(1) = \varphi(0) + \varphi'(0) + \ldots + \frac{\varphi^{(p)}(0)}{p!} + r_p,$$

onde
$$r_p = \frac{1}{p!} \int_0^1 (1-t)^p \phi^{(p+1)}(t) dt$$
.

Logo,

$$f(\alpha + \nu) = f(\alpha) + df(\alpha)\nu + \ldots + \frac{1}{p!}d^{(p)}(\alpha)\nu^p + r_p(\nu),$$

onde

$$r_{p}(v) = \frac{1}{p!} \int_{0}^{1} (1-t)^{p} d^{p+1} f(a+tv) v^{p+1} dt.$$

Antes de provarmos a Fórmula de Taylor Infinitesimal, faremos algumas considerações de

caráter geral.

Definição 8.1. Seja $\mathbb{R}^n \times \ldots \times \mathbb{R}^n$ o produto cartesiano de k-cópias do espaço \mathbb{R}^n e seja $L: \mathbb{R}^n \times \ldots \times \mathbb{R}^n \longrightarrow \mathbb{R}$ uma transformação k-linear. Dizemos que L é *simétrica* se

$$L(v_1,\ldots,\widehat{v_i},\ldots,\widehat{v_j},\ldots,v_k) = L(v_1,\ldots,\widehat{v_j},\ldots,\widehat{v_i},\ldots,v_k),$$

para quaisquer $\nu_1, \dots, \nu_k \in \mathbb{R}^n$ e todo par $i,j=1,\dots,n,$ com i < j.

Então, se $\nu_j=(\alpha_1^j,\ldots,\alpha_n^j),\,j=1,\ldots,k,$ temos

$$L(\nu_1,\ldots,\nu_k) = \sum \alpha_{i_1,\ldots,i_k} \; \alpha_{i_1}^1 \ldots \alpha_{i_k}^k \; , \label{eq:local_local_local}$$

onde $a_{i_1,\ldots,i_k} = L(e_{i_1},\ldots,e_{i_k})$ independe da ordem dos índices $i_1,\ldots,i_k=1,\ldots,n$.

Observação 8.3. Se $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ é uma função p-vezes diferenciável no ponto a, a transformação k-linear $d^kf(a):\mathbb{R}^n\times\ldots\times\mathbb{R}^n\longrightarrow\mathbb{R}$ definida por:

$$d^k f(a)(\nu_1,\ldots,\nu_k) = \sum_{i_1,\ldots,i_k=1}^n \frac{\partial^k f(a)}{\partial x_{i_1}\ldots\partial x_{i_k}} \,\alpha_{i_1}^1\ldots\alpha_{i_k}^k\,,$$

chama-se k-ésima diferencial da função f no ponto α , para $k = 1, \dots, p$.

Por Schwarz, temos que $d^k f(a)$ é simétrica, $1 \le k \le p$.

Observe que $d^k f(a)v^k = d^k f(a)(v, \dots, v)$ é a forma associada à aplicação k-linear $d^k f(a)$.

Definição 8.2. Dizemos que uma função $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ é k—homogênea quando $f(tx) = t^k f(x)$ para todo $x \in \mathbb{R}^n$ e $t \in \mathbb{R}$.

Exemplo 8.1. Se $L: \mathbb{R}^n \times \ldots \times \mathbb{R}^n \longrightarrow \mathbb{R}$ é k-linear, então $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ definida por $g(x) = L(x, \ldots, x)$ é k-homogênea, ou melhor, g é um polinômio homogêneo de grau k e, portanto, g é C^∞ . \square

Observação 8.4. Seja $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função k-homogênea de classe C^k , $k \ge 1$.

Afirmação 1: $\frac{\partial^j f}{\partial x_{i_1} \dots \partial x_{i_j}}$ é uma função (k-j)—homogênea para todo $1 \le j \le k$ e para quaisquer $i_1, \dots, i_j = 1, \dots, n$.

Como $f(tx) = t^k f(x)$, temos, pela Regra da Cadeia, que

$$\frac{\partial f}{\partial x_i}(tx)\,t=t^k\frac{\partial f}{\partial x_i}(x)\,,$$

para todo $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, $i = 1, \dots, n$.

Logo, se $t \neq 0$, $\frac{\partial f}{\partial x_i}(tx) = t^{k-1}\frac{\partial f}{\partial x_i}(x)$ para todo $x \in \mathbb{R}^n$. Como $f \in C^k$, $k \geq 1$, temos que $\frac{\partial f}{\partial x_i}(tx) = t^{k-1}\frac{\partial f}{\partial x_i}(x)$ para todo $x \in \mathbb{R}^n$, $t \in \mathbb{R}$.

Suponhamos, por indução, que o resultado é válido para funções k-1 homogêneas, $k-1 \geq 1$. Sendo $f \in C^k$, temos que $\frac{\partial f}{\partial x_i}: \mathbb{R}^n \longrightarrow \mathbb{R}$ são de classe C^{k-1} e (k-1)-homogêneas, para todo $i=1,\dots,n$.

Logo, pela hipótese de indução, para cada i = 1, ..., n, temos que:

$$\frac{\partial^{j}\left(\frac{\partial f}{\partial x_{i}}\right)}{\partial x_{i_{1}}\ldots\partial x_{i_{j}}}\left(tx\right)=t^{k-1-j}\frac{\partial^{j}\left(\frac{\partial f}{\partial x_{i}}\right)}{\partial x_{i_{1}}\ldots\partial x_{i_{j}}}(x),$$

para quaisquer $i_1, \ldots, i_j = 1, \ldots, n$ e para todo $j = 1, \ldots, k-1$. Ou seja,

$$\frac{\partial^{j+1} f}{\partial x_{i_1} \dots \partial x_{i_j} \partial x_i} (tx) = t^{k-1-j} \frac{\partial^{j+1} f}{\partial x_{i_1} \dots \partial x_{i_j} \partial x_i} (x),$$

para todo j + 1 = 2, ..., k, e para quaisquer $i_1, ..., i_i, i = 1, ..., n$.

• Logo, se $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ é uma função k—homogênea de classe C^k , então

$$d^{j}f(tx)(\nu_{1},\ldots,\nu_{j})=t^{k-j}d^{j}f(x)(\nu_{1},\ldots,\nu_{j})$$

para todo j = 1, ..., k.

Assim, $d^k f(tx)(\nu_1, \dots, \nu_k) = d^k f(x)(\nu_1, \dots, \nu_k)$ para todo $t \in \mathbb{R}$ e todo $x \in \mathbb{R}^n$. Em particular, $d^k f(x) = d^k f(0)$ independe do ponto $x \in \mathbb{R}^n$.

Como $\frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}(x) = \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}(0)$ para todo $x \in \mathbb{R}$ e para quaisquer $i_1, \dots, i_k = 1, \dots, n$, temos que todas as derivadas parciais de ordem k de f são constantes.

Logo f é de classe C^{∞} e $d^{j}f(x) = 0$ para todo j > k e para todo $x \in \mathbb{R}^{n}$.

Afirmação 2:
$$d^k f(0)x^k = k! f(x)$$
 e $d^j f(0)x^j = 0$, se $j \neq k$. (II)

De fato, seja $\varphi(t) = f(tx) = t^k f(x)$. Então, como foi provado no Teorema 8.1, temos:

$$\varphi^{(i)}(t) = d^i f(tx) x^i$$
, para todo $i \in \mathbb{N}$.

 $\text{Mas, por outro lado, } \phi^{(i)}(t) = \frac{k!}{(k-i)!} \, t^{k-i} \, f(x), \, \text{para todo } 1 \leq i \leq k, \, \text{e} \, \, \phi^{(j)}(t) = 0 \, \, \text{para} \, \, j > k.$

Logo $d^i f(0) x^i = 0$ para $i \neq k$ e $d^k f(0) x^k = k! f(x)$.

Então f(x) = L(x, ..., x), onde $L = \frac{1}{k!} d^k f(0)$ é uma transformação k-linear simétrica.

Como $d^k f(x) = d^k f(0)$ para todo $x \in \mathbb{R}^n$, temos que $d^k f(x) = k!$ L para todo $x \in \mathbb{R}^n$.

• Se f não é de classe C^k , f não é necessariamente a forma associada a uma transformação k-linear simétrica.

Exemplo 8.2. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função definida por $f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$, $(x,y) \neq (0,0)$, e f(0,0) = 0.

Então $f(tx,ty)=t^2f(x,y)$ para todo $t\in\mathbb{R}$ e todo $(x,y)\in\mathbb{R}^2$, ou seja, f é uma função 2—homogênea. Mas, f não é a forma quadrática de uma transformação bilinear. Isso ocorre porque f é de classe C^1 , mas f não é duas vezes diferenciável na origem (verifique!). \square

Afirmação 3: $d^j f(x)(\nu_1, \ldots, \nu_j) = \frac{1}{(k-j)!} d^k f(0)(x, \ldots, x, \nu_1, \ldots, \nu_j)$ para todo $1 \le j \le k$.

Sejam $1 \leq j \leq k$ e $g(x) = \frac{\partial^j f}{\partial x_{i_1} \, \ldots \, \partial x_{i_j}} \, (x)$, onde $i_1, \ldots, i_j \in \{1, \ldots, n\}$. Como

$$\frac{\vartheta^{j}f}{\vartheta x_{i_{1}}\,\ldots\,\vartheta x_{i_{i}}}\,(tx)=t^{k-j}\,\frac{\vartheta^{j}f}{\vartheta x_{i_{1}}\,\ldots\,\vartheta x_{i_{i}}}\,(x),$$

temos que g é (k-j)-homogênea e, portanto, por (II), $d^{(k-j)} g(0)x^{k-j} = (k-j)! g(x)$, ou seja,

$$d^{k-j}\left(\frac{\partial^{j}f}{\partial x_{i_{1}}\ldots\partial x_{i_{j}}}\right)(0)x^{k-j}=(k-j)!\frac{\partial^{j}f}{\partial x_{i_{1}}\ldots\partial x_{i_{j}}}(x),$$

para todo $x \in \mathbb{R}^n$ e quaisquer $i_1, \dots, i_j = 1, \dots, n$.

Logo, sendo $v_{\ell}=(\alpha_1^{\ell},\ldots,\alpha_n^{\ell}),\,\ell=1,\ldots,\mathfrak{j},$ temos que:

$$\begin{split} d^{j}f(x)(\nu_{1},\ldots,\nu_{j}) &= \sum_{i_{1},\ldots,i_{j}=1}^{n} \frac{\partial^{j}f}{\partial x_{i_{1}}\ldots\partial x_{i_{j}}}(x)\;\alpha_{i_{1}}^{1}\ldots\alpha_{i_{j}}^{j} \\ &= \frac{1}{(k-j)!}\sum_{i_{1},\ldots,i_{j}=1}^{n} \left(\sum_{\ell_{1},\ldots,\ell_{k-j}=1}^{n} \frac{\partial^{k}f(0)}{\partial x_{\ell_{1}}\ldots\partial x_{\ell_{k-j}}\partial x_{i_{1}}\ldots\partial x_{i_{j}}}x_{\ell_{1}}\ldots x_{\ell_{k-j}}\right)\;\alpha_{i_{1}}^{1}\ldots\alpha_{i_{j}}^{j} \\ &= \frac{1}{(k-j)!}\;d^{k}f(0)(x,\ldots,x,\nu_{1},\ldots,\nu_{j})\;. \end{split}$$

• Em particular, seja $T: \mathbb{R}^n \times \ldots \times \mathbb{R}^n \longrightarrow \mathbb{R}$ uma transformação k—linear e $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ dada por $f(x) = T(x, \ldots, x)$. Então, como f é k—homogênea e de classe C^{∞} , temos, por (II), que

$$f(x) = T(x,...,x) = \frac{1}{k!} df^k(0)(x,...,x),$$

ou seja,

$$df^{k}(0)(x,\ldots,x) = k! T(x,\ldots,x).$$
(III)

• Dada uma transformação k-linear $T:\mathbb{R}^n\times\ldots\times\mathbb{R}^n\longrightarrow\mathbb{R}$, a transformação k-linear $T_S=\sum_{\sigma\in\mathcal{P}}T_\sigma$, onde \mathcal{P} é o conjunto de todas as permutações de $\{1,\ldots,k\}$ e $T_\sigma(\nu_1,\ldots,\nu_k)=T(\nu_{\sigma(1)},\ldots,\nu_{\sigma(k)})$, é chamada simetrização da transformação T.

Observe que T_S é k-linear *simétrica* e $T_S(x, ..., x) = k! T(x, ..., x)$.

Então, por (III),

$$d^k f(0)(x, \dots, x) = T_S(x, \dots, x). \tag{IV}$$

Afirmação 4: $d^k f(x) = d^k f(0) = T_S$. Em particular $d^k f(x) = d^k f(0) = k! T$, se T é simétrica.

De fato, por (IV), basta mostrar que se $U: \mathbb{R}^n \times ... \times \mathbb{R}^n \longrightarrow \mathbb{R}$ é uma transformação k—linear simétrica tal que g(x) = U(x,...,x) = 0 para todo $x \in \mathbb{R}^n$, então $U \equiv 0$.

Vamos fazer a prova deste fato usando indução em $k \in \mathbb{N}$.

Se k = 1, a afirmação é evidente.

Suponhamos o resultado válido para transformações (k-1)—lineares, k-1 > 1.

Seja $U: \mathbb{R}^n \times \ldots \times \mathbb{R}^n \longrightarrow \mathbb{R}$ uma transformação k-linear simétrica tal que $U(x, \ldots, x) = 0$ para todo $x \in \mathbb{R}^n$.

Sejam $v, w \in \mathbb{R}^n$ e $t \in \mathbb{R}$. Então,

$$0 = U(v + tw, v + tw, ..., v + tw) = t^{k-1} {k \choose k-1} U(v, w, ..., w)$$
$$+t^{k-2} {k \choose k-2} U(v, v, w, ..., w) + ... + t {k \choose 1} U(v, ..., v, w),$$

para todo $t \in \mathbb{R}$.

Logo U(v, w, ..., w) = 0 para quaisquer $v, w \in \mathbb{R}^n$.

Seja $v \in \mathbb{R}^n$ e defina $U_1 : \mathbb{R}^n \times \ldots \times \mathbb{R}^n \longrightarrow \mathbb{R}$ por $U_1(v_1, \ldots, v_{k-1}) = U(v, v_1, \ldots, v_{k-1})$. Então U_1 é uma transformação (k-1)-linear simétrica tal que $U_1(w, \ldots, w) = U(v, w, \ldots, w) = 0$ para todo $w \in \mathbb{R}^n$.

Logo, pela hipótese de indução, $U_1\equiv 0$, ou seja, $U_1(\nu_1,\ldots,\nu_{k-1})=0$ para quaisquer k-1 vetores $\nu_1,\ldots,\nu_{k-1}\in\mathbb{R}^n$. Então $U(\nu,\nu_1,\ldots,\nu_{k-1})=0$ para quaisquer $\nu,\nu_1,\ldots,\nu_{k-1}\in\mathbb{R}^n$. Assim $U\equiv 0$.

• Resumindo, se T : $\mathbb{R}^n \times ... \times \mathbb{R}^n \longrightarrow \mathbb{R}$ é uma transformação k-linear e f(x) = T(x,...,x), então para todo $x \in \mathbb{R}^n$:

$$\circ d^{k}f(x) = d^{k}f(0) = T_{S};$$

$$o d^{j}f(x) = 0$$
, se $j > k$.

 $\circ \ d^j f(x)(\nu_1,\ldots,\nu_j) \ = \ \frac{1}{(k-j)!} \, T_S(x,\ldots,x,\nu_1,\ldots,\nu_j), \ \text{se} \ 1 \ \le \ j \ \le \ k, \ \text{quaisquer que sejam}$ $\nu_1,\ldots,\nu_j \in \mathbb{R}^n.$

∘
$$d^{j}f(0) = 0$$
, se $1 \le j < k$. □

Passamos, agora, a analisar a Fórmula de Taylor Infinitesimal.

Se $f:U\longrightarrow \mathbb{R}$ é $\mathfrak{p}-vezes$ diferenciável no ponto $\mathfrak{a}\in U$, então $\lim_{\nu\to 0}\frac{r_{\mathfrak{p}}(\nu)}{\|\nu\|^{\mathfrak{p}}}=0$, onde $r_{\mathfrak{p}}:U_0=\{\nu\in\mathbb{R}^n\,;\,\mathfrak{a}+\nu\in U\}\longrightarrow \mathbb{R}$ é dada por:

$$r_{\mathfrak{p}}(\nu) = f(\mathfrak{a} + \nu) - f(\mathfrak{a}) - df(\mathfrak{a}) \nu - \frac{1}{2!} d^2 f(\mathfrak{a}) \nu^2 - \ldots - \frac{1}{\mathfrak{p}!} d^{\mathfrak{p}} f(\mathfrak{a}) \nu^{\mathfrak{p}}.$$

De fato, seja $g: U_0 \longrightarrow \mathbb{R}$ dada por g(v) = f(a+v). Então $g \notin p$ -vezes diferenciável na origem, pois a função $v \longmapsto a+v$ é de classe C^{∞} e f é p-vezes diferenciável em a.

Afirmação: $d^{j}g(0) = d^{j}f(a)$, $1 \le j \le p$.

Basta mostrar, por indução, que $\frac{\partial^k g}{\partial x_{i_1} \dots \partial x_{i_k}}(0) = \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}(\alpha)$, para todo $1 \leq k \leq p$ e para quaisquer $i_1, \dots, i_k \in \{1, \dots, n\}$.

Para $\mathfrak{j}=1$, temos, pela Regra da Cadeia (ver observação 8.2), que $d\mathfrak{g}(0)\nu=d\mathfrak{f}(a)\nu$ para todo $\nu\in\mathbb{R}^n$, ou seja, $\frac{\partial\mathfrak{g}}{\partial x_i}(0)=\frac{\partial\mathfrak{f}}{\partial x_i}(a)$ para todo $\mathfrak{i}=1,\ldots,n$.

Suponhamos que o resultado seja válido para funções (p-1)-vezes diferenciáveis no ponto $a \in U$, $p-1 \ge 1$. Seja f uma função p-vezes diferenciável no ponto a. Então $\frac{\partial f}{\partial x_i}$ é (p-1)-vezes diferenciável no ponto a, para todo $i=1,\ldots,n$.

Pela hipótese de indução, a função h dada por $h(\nu)=\frac{\partial f}{\partial x_i}(\alpha+\nu), \ \nu\in U_0, \ \text{\'e}\ (p-1)$ -vezes diferenciável na origem e

$$\frac{\vartheta^k h}{\vartheta x_{i_1} \ldots \vartheta x_{i_k}}(0) = \frac{\vartheta^k \left(\frac{\vartheta f}{\vartheta x_i}\right)}{\vartheta x_{i_1} \ldots \vartheta x_{i_k}}(\alpha)\,, \tag{V}$$

para $1 \le k \le p-1$, quaisquer que sejam $i_1, \ldots, i_k \in \{1, \ldots, n\}$.

Logo, como $p \geq 2$, temos que f é diferenciável numa vizinhança do ponto α e, portanto, $\frac{\partial g}{\partial x_i}(\nu) = \frac{\partial f}{\partial x_i}(\alpha + \nu) \text{ para todo } i = 1, \dots, n, \text{ e todo } \nu \text{ numa vizinhança da origem.}$

Assim, $h(v) = \frac{\partial g}{\partial x_i}(v)$ e, por (V),

$$\frac{\partial^{k}\left(\frac{\partial g}{\partial x_{i}}\right)}{\partial x_{i_{1}} \dots \partial x_{i_{k}}}(0) = \frac{\partial^{k+1} f}{\partial x_{i_{1}} \dots \partial x_{i_{k}} \partial x_{i}}(\alpha),$$

ou seja,

$$\frac{\vartheta^{k+1}g}{\vartheta x_{i_1}\,\ldots\,\vartheta x_{i_k}\,\vartheta x_i}(0) = \frac{\vartheta^{k+1}\,f}{\vartheta x_{i_1}\,\ldots\,\vartheta x_{i_k}\,\vartheta x_i}(\alpha)\,,$$

para todo $k+1=2,\ldots,p$ e quaisquer $i_1,\ldots,i_k,i\in\{1,\ldots,n\}.$

• Sendo $H_k: \mathbb{R}^n \longrightarrow \mathbb{R}$, $H_k(\nu) = d^k f(a) \nu^k$, $1 \le k \le p$, temos, pelo provado na observação 8.4, que $d^j H_k(0) = 0$ se $j \in \{1, \dots, p\}$ e $j \ne k$, e $d^k H_k(0) = k! \ d^k f(a)$.

Logo $r_p(0) = 0$ e $d^j r_p(0) = d^j f(\alpha) - d^j f(\alpha) = 0$ para todo $j = 1, \dots, p$.

Prova.

(\Longrightarrow) Para p = 0, estamos supondo r contínua no ponto 0.

Para p = 1, r é diferenciável na origem e r(0) = dr(0) = 0. Logo, como

$$r(v) = r(0) + dr(0)v + \rho(v)||v||,$$

 $\text{com}\,\lim_{\nu\to 0}\rho(\nu)=0,\,\text{temos que}\,\,\rho(\nu)=\frac{r(\nu)}{\|\nu\|}\,,\,\text{e, portanto,}\,\lim_{\nu\to 0}\frac{r(\nu)}{\|\nu\|}=0.$

Suponhamos que o resultado é válido para funções (p-1)-vezes diferenciáveis na origem, $p-1 \geq 1$.

Seja $r:U_0\longrightarrow\mathbb{R}$ uma função p-vezes diferenciável na origem com $r(0)=dr(0)=\ldots=d^pr(0)=0.$

Então, para todo $1 \leq i \leq n, \ \phi_i = \frac{\partial r}{\partial x_i}: U_0 \longrightarrow \mathbb{R} \ \text{\'e} \ (p-1)$ -vezes diferenciável na origem e

$$\phi_i(0) = d\phi_i(0) = \ldots = d^{p-1}\phi_i(0). \text{ Logo, pela hipótese de indução, } \lim_{\nu \to 0} \frac{\frac{\partial r}{\partial x_i}(\nu)}{\|\nu\|^{p-1}} = 0.$$

Como $p\geq 2$, r é diferenciável numa vizinhança $V_0\subset U_0$ da origem e, portanto, pelo teorema do valor médio, para todo $v\in U_0$, existe $\theta_v\in (0,1)$ tal que

$$\frac{r(\nu)}{\|\nu\|^p} = \frac{\displaystyle\sum_{i=1}^n \frac{\partial r}{\partial x_i}(\theta_\nu \nu) \, \alpha_i}{\|\nu\|^p} = \sum_{i=1}^n \left[\left(\frac{\frac{\partial r}{\partial x_i}(\theta_\nu \nu)}{\|\theta_\nu \nu\|^{p-1}} \right) \, \frac{\alpha_i}{\|\nu\|} \, |\theta_\nu|^{p-1} \right] \, .$$

Considerando \mathbb{R}^n com a norma do máximo, temos que $\left|\frac{\alpha_i}{\|\nu\|}\right| \leq 1$, para todo $i=1,\ldots,n$.

 $\text{Logo} \lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|^p} = 0 \text{, uma vez que } \lim_{\nu \to 0} \frac{\frac{\partial r}{\partial x_i}(\theta_\nu \nu)}{\|\theta_\nu \nu\|^{p-1}} = 0 \text{, para todo } i = 1, \dots, n.$

(\longleftarrow) Para p=0, $\lim_{\nu\to 0} r(\nu)=0$, e, portanto, r(0)=0, pois estamos supondo r contínua na origem.

Para p=1, $\lim_{\nu\to 0} r(\nu)=\lim_{\nu\to 0} \frac{r(\nu)}{\|\nu\|}\,\|\nu\|=0$. Então r(0)=0, pois r é contínua na origem, uma vez que r é diferenciável neste ponto. Além disso, como f é diferenciável na origem,

$$r(\nu) = r(0) + dr(0)\nu + \overline{r}(\nu) = dr(0)\nu + \overline{r}(\nu)$$
 ,

onde $\lim_{\nu\to 0}\frac{\overline{r}(\nu)}{\|\nu\|}=0$. Logo, para todo $\nu\in\mathbb{R}^n-\{0\}$ e para todo $t\in\mathbb{R}-\{0\},$ $\frac{r(t\nu)}{t}=dr(0)\nu+\frac{\overline{r}(t\nu)}{t}$. Como

$$\lim_{t\to 0} \frac{r(t\nu)}{\|t\nu\|} = \lim_{t\to 0} \frac{\overline{r}(t\nu)}{\|t\nu\|} = 0,$$

temos que

$$dr(0)\nu = \lim_{t\to 0}\frac{r(t\nu)}{t} - \lim_{t\to 0}\frac{\overline{r}(t\nu)}{t} = \lim_{t\to 0}\pm \|\nu\|\left(\frac{r(t\nu)}{\|t\nu\|} - \frac{\overline{r}(t\nu)}{\|t\nu\|}\right) = 0 \text{ ,}$$

para todo $v \in \mathbb{R}^n - \{0\}$. Logo dr(0) = 0.

Suponhamos que o resultado é válido para funções p-vezes diferenciáveis no ponto 0, $p \ge 1$.

Seja $r: U_0 \longrightarrow \mathbb{R}$ uma função (p+1)-vezes diferenciável na origem com $\lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|^{p+1}} = 0$. Como

 $\lim_{\nu\to 0}\frac{r(\nu)}{\|\nu\|^p}=\lim_{\nu\to 0}\frac{r(p)}{\|\nu\|^{p+1}}\,\|\nu\|=0,\,\text{temos, pela hipótese de indução, que}$

$$r(0) = dr(0) = \dots = d^p r(0) = 0$$

Mostraremos, agora, que $d^{p+1} r(0) = 0$.

De fato, pelo provado na primeira parte do lema, temos que

$$\lim_{\nu \to 0} \frac{\mathbf{r}(\nu) - \frac{1}{(p+1)!} \, \mathbf{d}^{p+1} \, \mathbf{r}(0) \nu^{p+1}}{\|\nu\|^{p+1}} = 0,$$

já que $d^j \phi(0) = 0$, j = 1, ..., p, e $d^{p+1} \phi(0) = (p+1)! d^{p+1} r(0)$, onde $\phi(v) = d^{p+1} r(0) v^{p+1}$. Então, para todo $v \in \mathbb{R}^n - \{0\}$,

$$\lim_{t\to 0^+}\frac{\left(r(t\nu)-\frac{1}{(p+1)!}d^{p+1}\,r(0)(t\nu)^{p+1}\right)}{\|t\nu\|^{p+1}}=0\,,$$

e, portanto,

$$\frac{1}{(p+1)!}\,\frac{d^{p+1}\,r(0)\nu^{p+1}}{\|\nu\|^{p+1}} = \lim_{t\to 0^+}\frac{r(t\nu)}{\|t\nu\|^{p+1}} = 0\,.$$

Ou seja, $d^{p+1} r(0) v^{p+1} = 0$ para todo $v \in \mathbb{R}^n$. Então $d^{p+1} r(0) = 0$.

Observação 8.5. (Unicidade da Fórmula de Taylor)

Seja $f:U\longrightarrow \mathbb{R}$ uma função $\mathfrak{p}-$ vezes diferenciável no ponto $\mathfrak{a}\in U$ e, para cada $\mathfrak{i}=1,\ldots,\mathfrak{p}$, seja $\phi_{\mathfrak{i}}:\mathbb{R}^{\mathfrak{n}}\times\ldots\times\mathbb{R}^{\mathfrak{n}}\longrightarrow\mathbb{R}$ uma função $\mathfrak{i}-$ linear. Se

$$f(\alpha+\nu)=f(\alpha)+\phi_1\nu+\phi_2\nu^2+\ldots+\phi_p\nu^p+r_p(\nu)\,,$$

 $\textit{com} \lim_{\nu \to 0} \frac{r_p(\nu)}{\|\nu\|^p} = 0, \, \textit{ent\~ao} \,\, \phi_i \nu^i = \frac{1}{i!} d^i f(\alpha) \nu^i, \, \textit{para todo} \,\, i = 1, \dots, p \,\, \textit{e todo} \,\, \nu \in \mathbb{R}^n.$

De fato, como r_p é p-vezes diferenciável no ponto 0 e $\lim_{\nu\to 0}\frac{r_p(\nu)}{\|\nu\|^p}=0$, temos, pelo lema acima, que $r_p(0)=dr_p(0)=\ldots=d^pr_p(0)=0$. Mas, pela observação 8.4, $d^ir_p(0)=d^if(\alpha)-\phi^S_i$, para todo $i=1,\ldots,p$, onde ϕ^S_i é a simetrização de ϕ_i . Logo $\phi^S_i=d^if(\alpha)$, ou seja,

$$\varphi_i v^i = \frac{1}{i!} \varphi_i^S v^i = \frac{1}{i!} d^i f(a) v^i,$$

para todo $i = 1, \dots, p$.

Definição 8.3. Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função duas vezes diferenciável no ponto $a \in U$. A *forma Hessiana* Hf(a), de f no ponto a é a forma quadrática da transformação bilinear simétrica $d^2f(a)$, ou seja,

$$Hf(\alpha) v^2 = d^2 f(\alpha) v^2 = \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\alpha) \alpha_i \alpha_j,$$

onde $\nu = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$.

• Pelo teorama de Schwarz, a matriz $\left(\frac{\partial^2 f}{\partial x_i \, \partial x_j}(a)\right)$, chamada *matriz Hessiana de* f *no ponto* a, é simétrica.

Definição 8.4. Seja $f: U \longrightarrow \mathbb{R}$ uma função diferenciável. Um ponto $a \in U$ é um *ponto crítico* de f (ou um *ponto singular*) quando df(a) = 0, ou seja, $\frac{\partial f}{\partial x_1}(a) = \ldots = \frac{\partial f}{\partial x_n}(a) = 0$.

Definição 8.5. Dizemos que a função f tem um *máximo* (respectivamente, um *mínimo*) *local* no ponto $a \in U$ quando existe $\delta > 0$ tal que

$$\|\nu\| < \delta \Longrightarrow f(\alpha + \nu) \le f(\alpha)$$
 (respectivamente, $f(\alpha) \le f(\alpha + \nu)$).

Observação 8.6. Se $f: U \longrightarrow \mathbb{R}$ é diferenciável no ponto $a \in U$ e a é um ponto de máximo local (ou de mínimo local), então a é um ponto crítico de f

De fato, neste caso o ponto 0 é um ponto de máximo (ou de mínimo) local para as funções reais de uma variável real dadas por: $\phi_i(t) = f(\alpha + te_i), \ i = 1, \ldots, n.$ Logo $\frac{\partial f}{\partial x_i}(\alpha) = \phi_i'(0) = 0$, para todo $i = 1, \ldots, n$.

Então df(a) = 0, ou seja, a é um ponto crítico de f.

Definição 8.6. Dizemos que um ponto crítico α de f é não-degenerado quando a matriz Hessiana de f no ponto α é invertível, ou seja, $\det\left(\frac{\partial^2 f}{\partial x_i \, \partial x_j}(\alpha)\right) \neq 0$.

Teorema 8.3. Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função duas vezes diferenciável. Todo ponto crítico não-degenerado $a \in U$ é um ponto crítico isolado.

Este teorema é consequência do seguinte resultado.

Teorema 8.4. Seja $F=(f_1,\ldots,f_n):U\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$ uma função onde cada função coordenada $f_i:U\longrightarrow\mathbb{R},\,i=1,\ldots,n$, é diferenciável no ponto $\alpha\in U$. Se a matriz $H=\left(\frac{\partial f_i}{\partial x_j}(\alpha)\right)_{n\times n}$ tem determinante diferente de zero, então existe $\delta>0$ tal que

$$0 < \|x - \alpha\| < \delta \Longrightarrow F(x) \neq F(\alpha)$$
.

A matriz H, referida no teorema acima, é chamada a matriz Jacobiana de f no ponto a.

Lema 8.2. Seja $H: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma transformação linear invertível. Então existe c > 0 tal que $\|H(x)\| \ge c\|x\|$ para todo $x \in \mathbb{R}^n$.

Prova.

$$\begin{split} \text{Seja } \frac{1}{c} = \|H^{-1}\| = \sup \left\{\|H^{-1}(x)\| \, | \, \|x\| = 1\right\} > 0. \text{ Ent\~ao, para todo } x \in \mathbb{R}^n \text{:} \\ \|x\| = \|H^{-1}(H(x))\| \leq \|H^{-1}\| \, \|H(x)\| = \frac{\|H(x)\|}{c} \, , \end{split}$$

ou seja, $||H(x)|| \ge c||x||$.

Prova.

(Demonstração do teorema 8.4)

Como a função $f_i:U\longrightarrow \mathbb{R}$ é diferenciável no ponto a, para cada $i=1,\ldots,n$, temos:

$$f_i(x) = f_i(\alpha) + \sum_{j=1}^n h_{ij}(x_j - \alpha_j) + \rho_i(x) \|x - \alpha\|,$$

$$\text{ onde } \lim_{x \to \alpha} \rho_i(x) = 0 \ \ \text{e} \ \ h_{ij} = \frac{\partial f_i}{\partial x_i}(\alpha) \,.$$

Fazendo $\rho(x) = (\rho_1(x), \dots, \rho_n(x))$, temos que:

$$F(x) = F(a) + H(x - a) + \rho(x) ||x - a||,$$

onde $\lim_{x\to a} \rho(x) = 0$.

Pelo lema 8.2, existe $c=\frac{1}{\|H^{-1}\|}>0$ tal que $\|H(x)\|\geq c\|x\|$ para todo $x\in\mathbb{R}^n.$

 $\text{Como } \lim_{x \to a} \rho(x) = 0, \text{ existe } \delta > 0 \text{ tal que } 0 < \|x - \alpha\| < \delta \Longrightarrow \|\rho(x)\| < \frac{c}{2}.$

Logo, se 0 < $\|x - a\| < \delta$, obtemos:

$$\begin{split} \|F(x) - F(\alpha)\| &= \|H(x - \alpha) + \rho(x)\|x - \alpha\| \| \ge \|H(x - \alpha)\| - \|\rho(x)\| \|x - \alpha\| \\ &\ge c\|x - \alpha\| - \frac{c}{2} \|x - \alpha\| = \frac{c}{2} \|x - \alpha\| \,, \end{split}$$

ou seja, $\|F(x) - F(\alpha)\| \ge \frac{c}{2} \|x - \alpha\|$.

Então $F(x) \neq F(\alpha)$ para todo $x \in U$ tal que $0 < \|x - \alpha\| < \delta$.

Prova.

(Demonstração do teorema 8.3)

Seja $F:U\longrightarrow \mathbb{R}^n$ dada por $F(x)=\left(\frac{\partial f}{\partial x_1}(x),\ldots,\frac{\partial f}{\partial x_n}(x)\right)$. Então F tem funções coordenadas $f_i=\frac{\partial f}{\partial x_i}$ diferenciáveis no ponto α e a matriz $\left(\frac{\partial f_i}{\partial x_j}(\alpha)\right)=\left(\frac{\partial^2 f}{\partial x_j\,\partial x_i}(\alpha)\right)$ é a matriz Hessiana de f no ponto α . Logo, pelo teorema 8.4, existe $\delta>0$ tal que $0<\|x-\alpha\|<\delta\Longrightarrow F(x)\ne F(\alpha)=0$, ou seja, grad $f(x)\ne 0$. Provamos, assim, que se $0<\|x-\alpha\|<\delta$, então x não é um ponto crítico de f.

Corolário 8.1. O conjunto dos pontos críticos não-degenerados de uma função duas vezes diferenciável é enumerável.

Prova.

Basta lembrar que todo conjunto discreto é enumerável.

Corolário 8.2. Se todos os pontos críticos de uma função $f:U \longrightarrow \mathbb{R}$, duas vezes diferenciável, são não-degenerados, então em cada compacto $K \subset U$ há apenas um número finito deles.

Prova.

Como f é de classe C^1 , o conjunto C dos pontos críticos é um subconjunto fechado de U, pois $C = F^{-1}(0)$, onde F é a função contínua dada por $F(x) = \left(\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x)\right)$. Logo o conjunto dos pontos críticos de f contidos num compacto $K \subset U$ é fechado em K e é, portanto, compacto. Como $C \cap K$ é compacto e discreto, temos que $C \cap K$ é finito.

Definição 8.7. Seja $H:\mathbb{R}^n\longrightarrow\mathbb{R}$ a forma quadrática dada por $Hv^2=\sum_{i,j=1}^nh_{ij}\,\alpha_i\,\alpha_j$, onde $h_{ij}=h_{ji},\,i,j=1,\ldots,n,\,e\,v=(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}^n.$

Dizemos que H é *positiva* (respectivamente *negativa*) se $Hv^2 > 0$ (respectivamente $Hv^2 < 0$) para todo $v \in \mathbb{R}^n - \{0\}$.

Se uma forma quadrática é positiva ou negativa, dizemos que ela é *definida*. E dizemos que uma forma quadrática H é *indefinida* quando existem $v, w \in \mathbb{R}^n$ tais que $Hv^2 > 0$ e $Hw^2 < 0$.

Exemplo 8.3. Se $\langle \ , \ \rangle$ é um produto interno de \mathbb{R}^n , a forma quadrática $H v^2 = \langle v, v \rangle$ é positiva, e a forma quadrática $H v^2 = \langle v, v \rangle$ é negativa.

E, para todo $\mathfrak{i}=1,\ldots,n-1,$ a forma quadrática

$$\label{eq:energy_energy} H\,\nu^2 = \alpha_1^2 + \ldots + \alpha_i^2 - \alpha_{i+1}^2 - \ldots - \alpha_n^2\,,$$

é indefinida.

Observação 8.7.

- H é positiva se, e somente se, todos os autovalores da matriz simétrica (h;i) são positivos.
- H é negativa se, e somente se, todos os autovalores da matriz simétrica (hij) são negativos.

Em particular, se H é definida então $det(h_{ij}) \neq 0$, ou seja, a matriz (h_{ij}) é invertível.

Podemos também provar isto, observando que se $Hv^2 \neq 0$ para todo $v \in \mathbb{R}^n - \{0\}$ então $Hv^2 = \langle H_0v, v \rangle \neq 0$ para todo $v \in \mathbb{R}^n - \{0\}$, onde $H_0 = (h_{ij})$. Logo $H_0v \neq 0$ para todo $v \in \mathbb{R}^n - \{0\}$ e, portanto, H_0 é invertível.

• H é indefinida se, e somente se, $H_0 = (h_{ij})$ possui um autovalor positivo e outro negativo.

Observação 8.8. Se f é duas vezes diferenciável no ponto a, df(a) = 0 e Hf(a) é positiva ou negativa, então a é um ponto crítico não-degenerado.

Teorema 8.5. Sejam $f:U \longrightarrow \mathbb{R}$ uma função duas vezes diferenciável no ponto crítico $a \in U$ e H a forma quadrática Hessiana de f no ponto a. Então:

- (1) Se H é positiva, a é ponto de mínimo local não-degenerado;
- (2) Se H é negativa, a é ponto de máximo local não-degenerado;
- (3) Se H é indefinida, a não é ponto de mínimo local nem de máximo local de f.

Prova.

Seja $\delta_0 > 0$ tal que $B_{\delta_0}(a) \subset U$. Então $a + v \in U$ se $0 < ||v|| < \delta_0$.

Para todo $\nu \in \mathbb{R}^n$, com $0 < \|\nu\| < \delta_0$, temos

$$f(a + v) = f(a) + \frac{1}{2}Hv^2 + r(v) = f(a) + \left[\frac{1}{2}H\left(\frac{v}{\|v\|}\right)^2 + \frac{r(v)}{\|r(v)\|^2}\right] \|v\|^2. \tag{*}$$

Como a função $\varphi_0: \mathbb{R}^n \longrightarrow \mathbb{R}, \ \varphi_0(\nu) = H\nu^2$ é contínua e $S^{n-1} = \{\nu \in \mathbb{R}^n | \|\nu\| = 1\}$ é compacto, temos que se H é positiva, existe c > 0 tal que $\varphi_0(\mathfrak{u}) \geq c$ para todo $\mathfrak{u} \in S^{n-1}$.

$$\text{Logo H}\left(\frac{\nu}{\|\nu\|}\right)^2 \geq c \text{ para todo } \nu \in \mathbb{R}^n - \{0\}.$$

Além disso, temos que $\lim_{\nu \to 0} \frac{r(\nu)}{\|\nu\|^2} = 0$, pois f é duas vezes diferenciável no ponto a. Logo existe $0 < \delta < \delta_0$, tal que $0 < \|\nu\| < \delta \Longrightarrow \left|\frac{r(\nu)}{\|\nu\|^2}\right| < \frac{c}{4}$.

 $\text{Assim, } f(\alpha+\nu)-f(\alpha) \geq \left(\frac{c}{2}-\frac{c}{4}\right)\|\nu\|^2 = \frac{c}{4}\|\nu\|^2 > 0 \text{ para todo } 0 < \|\nu\| < \delta, \text{ ou seja, } f(\alpha+\nu) > f(\alpha) \\ \text{para todo } 0 < \|\nu\| < \delta. \text{ Então } \alpha \text{ \'e um ponto de mínimo local para f.}$

A afirmação (2) prova-se de modo análogo.

Se H é indefinida, existem $v, w \in \mathbb{R}^n - \{0\}$ tais que $Hv^2 > 0$ e $Hw^2 < 0$. Então, para todo $t \neq 0$, temos que $H(tv)^2 = t^2 Hv^2 > 0$ e $H(tw)^2 = t^2 Hw^2 < 0$. Logo, por (\star)

Como $\lim_{t\to 0} \frac{r(tv)}{t^2} = \lim_{t\to 0} \frac{r(tw)}{t^2} = 0$, segue-se que

$$\lim_{t\to 0}\frac{f(\alpha+t\nu)-f(\alpha)}{t^2}=H\nu^2>0 \qquad \text{e}\qquad \lim_{t\to 0}\frac{f(\alpha+tw)-f(\alpha)}{t^2}=Hw^2<0.$$

 $\text{Logo existe } \delta > 0 \text{ tal que } 0 < |t| < \delta \Longrightarrow f(\alpha + t\nu) - f(\alpha) > 0 \text{ e } f(\alpha + tw) - f(\alpha) < 0.$

Portanto, a não é ponto de máximo local nem de mínimo local para f.

Exemplo 8.4. Seja $f: \mathbb{R}^{m+n} = \mathbb{R}^m \times \mathbb{R}^n \longrightarrow \mathbb{R}$ a função definida por $f(x,y) = \langle x,x \rangle - \langle y,y \rangle$, onde $x \in \mathbb{R}^m$ e $y \in \mathbb{R}^n$. Então $\frac{\partial f}{\partial x_i} = 2x_i$ e $\frac{\partial f}{\partial y_j} = -2y_j$. Logo grad f(x,y) = 2(x,-y) e, portanto, a origem é o único ponto crítico de f.

A matriz Hessiana de f em qualquer ponto de \mathbb{R}^{m+n} é a matriz diagonal cujas \mathfrak{m} primeiras entradas na diagonal principal são iguais a 2 e as \mathfrak{n} últimas são iguais a -2.

Então a matriz Hessiana é positiva se n=0, negativa se m=0, e indefinida se $mn\neq 0$. Assim, a origem é ponto de mínimo se n=0 e de máximo se m=0.

Para $mn \neq 0$, f não admite mínimo nem máximo na origem, que se chama um *ponto de sela*, devido à forma do gráfico da função $f(x,y) = x^2 - y^2$.

Observação 8.9. Como vimos na demonstração do teorema 8.5, se grad f(a)=0 e $H\nu^2>0$ para algum $\nu\in\mathbb{R}^n$, então existe $\delta>0$ tal que $0<|t|<\delta\Longrightarrow f(a+t\nu)>f(a)$. Então se a é um ponto de máximo local de f, a forma Hessiana de f no ponto a é não-positiva, isto é, $H\nu^2\leq 0$ para todo $\nu\in\mathbb{R}^n$. De modo análogo, se a é um ponto de mínimo local de f, então a forma Hessiana de f no ponto a é não-negativa, ou seja, $H\nu^2\geq 0$ para todo $\nu\in\mathbb{R}^n$.

Mas a recíproca destas afirmações são falsas, ou seja, quando a forma hessiana de f num ponto crítico $\acute{e} \le 0$ (ou ≥ 0) não se pode afirmar que a função tem um máximo (ou um mínimo) neste ponto.

Por exemplo, sejam as funções $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ e $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dadas por $f(x,y) = x^2 \qquad \text{e} \qquad g(x,y) = x^2 + y^3 \,.$

Então grad f(x,y)=(2x,0), grad $g(x,y)=(2x,3y^2)$, e as hessianas de f e g no ponto crítico (0,0) coincidem e são não-negativas, pois $Hf(0,0)v^2=Hg(0,0)v^2=2\alpha^2$ para todo $v=(\alpha,\beta)\in\mathbb{R}^2$. Mas a origem é um ponto de mínimo para f e não é um mínimo local para g.

9 O teorema da função implícita

Começamos observando o seguinte exemplo:

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$. Então $S^1 = f^{-1}(1) = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$.

A equação $x^2+y^2=1$ não define y como função de x, nem x como função de y, globalmente. Mas, se tomarmos $U_1=\{(x,y)\in\mathbb{R}^2|y>0\};\ U_2=\{(x,y)\in\mathbb{R}^2|y<0\};\ U_3=\{(x,y)\in\mathbb{R}^2|x>0\}$ e $U_4=\{(x,y)\in\mathbb{R}^2|x<0\}$, temos que:

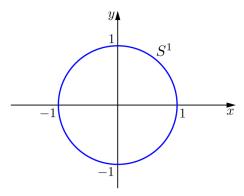


Fig. 8: O círculo unitário $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

- $(x, y) \in S^1 \cap U_1 \iff y = \sqrt{1 x^2} ex \in (-1, 1)$;
- $(x, y) \in S^1 \cap U_2 \iff y = -\sqrt{1 x^2} ex \in (-1, 1)$;
- $(x,y) \in S^1 \cap U_3 \iff x = \sqrt{1-y^2} e y \in (-1,1);$
- $(x,y) \in S^1 \cap U_4 \iff x = -\sqrt{1-y^2} \text{ e } y \in (-1,1)$.

Como
$$S^1=(U_1\cap S^1)\cup (U_2\cap S^1)\cup (U_3\cap S^1)\cup (U_4\cap S^1)$$
, temos que
$$S^1=\text{Graf }\xi_1\cup \text{Graf }\xi_2\cup \text{Graf }\xi_3\cup \text{Graf }\xi_4\,,$$

onde
$$\xi_i:(-1,1)\longrightarrow \mathbb{R},\, i=1,2,3,4,$$
 são as funções de classe C^∞ dadas por:
$$\xi_1(x)=\sqrt{1-x^2}\,,\,\,\xi_2(x)=-\sqrt{1-x^2}\,,\,\,\xi_3(y)=\sqrt{1-y^2}\,,\,\,e\,\,\xi_4(y)=-\sqrt{1-y^2}\,,$$

Logo todo ponto $(x_0, y_0) \in S^1$ pertence a um aberto V de \mathbb{R}^2 tal que $V \cap S^1$ é o gráfico de uma função de classe C^{∞} definida num aberto de \mathbb{R} .

Definição 9.1. Dizemos que um conjunto $C \subset \mathbb{R}^2$ é uma *curva de classe* C^k ($0 \le k \le \infty$) quando C é localmente o gráfico de uma função de classe C^k . Ou seja, para todo ponto $p \in C$ existe um aberto $V \subset \mathbb{R}^2$ tal que $p \in V$ e $V \cap C$ é o gráfico de uma função ξ de classe C^k definida num aberto de \mathbb{R} .

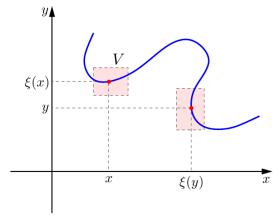


Fig. 9: Uma curva de classe C^k é, localmente, o gráfico de uma função de classe C^k

Exemplo 9.1. O círculo S^1 é uma curva de classe C^{∞} .

Exemplo 9.2. O conjunto $C = \{(x,y) \in \mathbb{R}^2 | x^2 - y^2 = 0\}$ não é uma curva nem de classe C^0 , pois, para todo aberto V contendo a origem, $C \cap V$ não é o gráfico de uma função $y = \xi(x)$ nem $x = \xi(y)$, uma vez que $C \cap V$ contém sempre dois segmentos de reta de inclinação ± 1 que se cortam na origem. \square

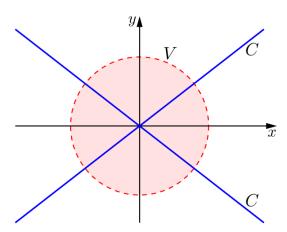


Fig. 10: O conjunto C não é uma curva nem de classe C^0 .

Exemplo 9.3. O conjunto $C=\{(x,y)\in\mathbb{R}^2\,|\,x^2-y^2=1\}$ é uma curva desconexa de classe C^∞ , pois $C=(V_1\cap C)\cup(V_2\cap C)$, onde $V_1=\{(x,y)\in\mathbb{R}^2\,|\,x>0\}$ e $V_2=\{(x,y)\in\mathbb{R}^2\,|\,x<0\}$ são abertos de \mathbb{R}^2 tais que:

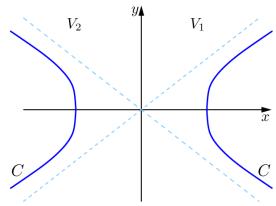


Fig. 11: O conjunto C é uma curva desconexa de classe C^{∞} .

• $V_1 \cap C$ é o gráfico da função C^∞ $\xi_1: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\xi_1(y) = \sqrt{1+y^2}$,

е

• $V_2 \cap C$ é o gráfico da função C^∞ $\xi_2: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\xi_2(y) = -\sqrt{1+y^2} \bigcap$

Analisaremos, agora, um exemplo de um subconjunto de \mathbb{R}^{n+1} que é dado localmente como o gráfico de uma função definida num aberto de \mathbb{R}^n .

Exemplo 9.4. Seja
$$f : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$$
 dada por $f(x) = \langle x, x \rangle$ e seja $f^{-1}(1) = S^n = \{x \in \mathbb{R}^{n+1} \mid \langle x, x \rangle = 1\}$

a esfera unitária n-dimensional.

Indiquemos por $U \subset \mathbb{R}^n$ a bola aberta de raio 1 e centro na origem.

Para cada i = 1, ..., n + 1, sejam $V_i = \{x \in \mathbb{R}^{n+1} | x_i > 0\}$ e $W_i = \{x \in \mathbb{R}^{n+1} | x_i < 0\}$.

Escrevendo $x^* = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$, temos:

Logo, se $\xi:U\longrightarrow\mathbb{R}$ é a função C^∞ dada por $\xi(\mathfrak{u})=\sqrt{1-\langle\mathfrak{u},\mathfrak{u}\rangle}$, $S^n\cap V_i$ é o gráfico da função $x_i=\xi(x^\star)$ e $S^n\cap W_i$ é o gráfico da função $x_i=-\xi(x^\star)$, para cada $i=1,\ldots,n+1$.

 $\label{eq:como} \text{Como } S^n = \left(\bigcup_{i=1}^{n+1} V_i \cap S^n\right) \cup \left(\bigcup_{i=1}^{n+1} W_i \cap S^n\right) \text{, todo ponto } \mathfrak{p} \in S^n \text{ pertence a um aberto } Z \text{ de } \mathbb{R}^{n+1} \text{ tal que } Z \cap S^n \text{ \'e o gráfico de uma função de classe } C^\infty \text{ definida num aberto de } \mathbb{R}^n.$

Definição 9.2. Um conjunto $M \subset \mathbb{R}^{n+1}$ chama-se uma *hipersuperfície* (ou *hiperfície*) de classe C^k , $0 \le k \le \infty$, de \mathbb{R}^{n+1} quando M é localmente o gráfico de uma função de classe C^k de n variáveis. Ou seja, todo ponto $\mathfrak{p} \in M$ pertence a um aberto $V \subset \mathbb{R}^{n+1}$ tal que $V \cap M$ é o gráfico de uma função de classe C^k definida num aberto de \mathbb{R}^n (existem um aberto $U \subset \mathbb{R}^n$, uma função $\xi: U \longrightarrow \mathbb{R}$ de classe C^k e um inteiro $\mathfrak{i} \in \{1, \ldots, n+1\}$ tais que $x_\mathfrak{i} = \xi(x_1, \ldots, x_{\mathfrak{i}-1}, x_{\mathfrak{i}+1}, \ldots, x_{\mathfrak{n}+1})$ e $x^* = (x_1, \ldots, x_{\mathfrak{i}-1}, x_{\mathfrak{i}+1}, \ldots, x_{\mathfrak{n}+1}) \in U$).

Quando n=1, dizemos que $M\subset \mathbb{R}^2$ é uma *curva*, e quando n=2, dizemos que $M\subset \mathbb{R}^3$ é uma *superfície*.

Observação 9.1. Podemos também considerar as *hipersuperfícies diferenciáveis* (caso intermediário entre C^0 e C^1) que são localmente gráficos de funções diferenciáveis.

Exemplo 9.5. S^n é uma hipersuperfície de classe C^∞ de \mathbb{R}^{n+1} . \square

Seja $M \subset \mathbb{R}^{n+1}$ e seja $\mathfrak{p} \in M$. Definimos $T_\mathfrak{p} M$ como sendo o conjunto de todos os vetores velocidade $\lambda'(0)$, onde $\lambda: (-\epsilon, \epsilon) \longrightarrow M \subset \mathbb{R}^{n+1}$ é um caminho diferenciável em t=0 e $\lambda(0)=\mathfrak{p}$.

Quando M é uma hipersuperfície diferenciável, o conjunto T_pM chama-se o *espaço tangente a M no ponto p*.

Teorema 9.1. Se $M \subset \mathbb{R}^{n+1}$ é uma hipersuperfície diferenciável, então T_pM é um subespaço vetorial de dimensão n do espaço euclidiano \mathbb{R}^{n+1} , para cada $p \in M$.

Prova.

Dado $\mathfrak{p}=(\mathfrak{a}_1,\ldots,\mathfrak{a}_{n+1})\in M$, existem abertos $V\subset\mathbb{R}^{n+1},\ U\subset\mathbb{R}^n$, com $\mathfrak{p}\in V$, um inteiro $\mathfrak{i}\in\{1,\ldots,n+1\}$ e uma função $\xi:U\longrightarrow\mathbb{R}$ diferenciável tais que $x\in V\cap M\Longleftrightarrow x_\mathfrak{i}=\xi(x^\star)$, onde $x^\star=(x_1,\ldots,x_{\mathfrak{i}-1},x_{\mathfrak{i}+1},\ldots,x_{n+1})\in U$.

$$\text{Afirmação: } T_pM = \left\{ \nu = (\alpha_1, \dots, \alpha_{n+1}) \in \mathbb{R}^{n+1} \left| \right. \left. \alpha_i = \sum_{j \neq i} \frac{\partial \xi}{\partial x_j}(p^\star) \right. \alpha_j \right\} \,,$$

onde
$$p^* = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{n+1})$$
.

De fato, seja $\nu \in T_pM$. Então existe um caminho diferenciável em $t=0, \lambda: (-\epsilon, \epsilon) \longrightarrow M$, com $\lambda(0)=p$ e $\lambda'(0)=\nu$. Como V é aberto, $p\in V$ e λ é contínuo em t=0, existe $0<\epsilon_0\leq \epsilon$ tal que $\lambda(t)\in M\cap V$ para todo $t\in (-\epsilon_0,\epsilon_0)$.

$$\text{Logo }\lambda_i(t)=\xi(\lambda_1(t),\dots,\lambda_{i-1}(t),\lambda_{i+1}(t),\dots,\lambda_{n+1}(t))\text{ para todo }t\in(-\epsilon_0,\epsilon_0).$$

Pela Regra da Cadeia,

$$\lambda_i'(0) = \sum_{i \neq j} \frac{\partial \xi}{\partial x_j}(p^*) \, \lambda_j'(0) \,,$$

ou seja,
$$\alpha_i = \sum_{j \neq i} \frac{\partial \xi}{\partial x_j} (p^*) \alpha_j$$
.

Sejam agora $\nu=(\alpha_1,\ldots,\alpha_{n+1})\in\mathbb{R}^{n+1}$ tal que $\alpha_i=\sum_{j\neq i}\frac{\partial\xi}{\partial x_j}(p^\star)\alpha_j$ e $\epsilon>0$ tal que $p^\star+t\nu^\star\in U$ para todo $t\in(-\epsilon,\epsilon)$, onde $\nu^\star=(\nu_1,\ldots,\nu_{i-1},\nu_{i+1},\ldots,\nu_{n+1}).$

Podemos, assim, definir o caminho $\lambda: (-\epsilon, \epsilon) \longrightarrow M \cap V$ pondo $\lambda_j(t) = a_j + t\alpha_j, j \neq i$, e $\lambda_i(t) = \xi(\lambda_1(t), \dots, \lambda_{i-1}(t), \lambda_{i+1}(t), \dots, \lambda_{n+1}(t)) = \xi(p^* + t\nu^*)$.

Logo λ é diferenciável em $t=0,\ \lambda(0)=p$ e $\lambda'(0)=\nu$. Então $\nu\in T_pM$, provando, assim, a afirmação.

Assim, T_pM é um subespaço vetorial de dimensão $\mathfrak n$ de $\mathbb R^{n+1}$ gerado pelos vetores linearmente independentes

$$e_1 + c_1 e_i$$
, ..., $e_{i-1} + c_{i-1} e_i$, $e_{i+1} + c_{i+1} e_i$, ..., $e_{n+1} + c_{n+1} e_i$,

onde
$$c_j = \left(\frac{\partial \xi}{\partial x_j}\right) (p^\star)$$
 .

Outra maneira de interpretar a afirmação acima é dizer que ela caracteriza T_pM como o núcleo do funcional linear não-nulo $\varphi:\mathbb{R}^{n+1}\longrightarrow\mathbb{R}$, dado por

$$\varphi(v) = \alpha_i - \sum_{i \neq j} c_j \alpha_j$$
,

onde $\nu=(\alpha_1,\ldots,\alpha_{n+1})$ e $c_j=\frac{\partial \xi}{\partial x_j}(p^\star).$ Ou ainda, T_pM é o gráfico do funcional linear

 $d\xi(\mathfrak{p}^{\star}): R^{\mathfrak{n}} \longrightarrow \mathbb{R}$, dado por:

$$\nu^\star = (\alpha_1, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{n+1}) \longmapsto d\xi(\mathfrak{p}^\star) \nu^\star = \sum_{i \neq i} \frac{\partial \xi}{\partial x_i}(\mathfrak{p}^\star) \alpha_i \,.$$

Exemplo 9.6. Seja $S^n = \{x \in \mathbb{R}^{n+1} | \langle x, x \rangle = 1\}$. Já sabemos que S^n é uma hipersuperfície de classe C^{∞} .

Afirmação: $T_pS^n=\{\nu\in\mathbb{R}^{n+1}\,|\,\langle\nu,p\rangle=0\}=[p]^\perp$, para todo $p\in S^n$.

De fato, seja $\lambda: (-\epsilon,\epsilon) \longrightarrow S^n$ uma curva diferenciável em t=0 com $\lambda(0)=\mathfrak{p}$ e $\lambda'(0)=\mathfrak{v}.$

Então, como $\langle \lambda(t), \lambda(t) \rangle = 1$ para todo $t \in (-\epsilon, \epsilon)$, temos que $2\langle \lambda'(0), \lambda(0) \rangle = 0$, ou seja, $\langle \nu, p \rangle = 0$. Logo $T_p S^n \subset [p]^\perp$ e, portanto, $T_p S^n = [p]^\perp$, pois $\dim T_p S^n = \dim[p]^\perp = n$. \square

Para hipersuperfícies $M\subset \mathbb{R}^{n+1}$ de classe C^0 , T_pM pode não ser um espaço vetorial de dimensão n.

Exemplo 9.7. Seja $X = \{(x, y, z) \in \mathbb{R}^3 | z = \sqrt{x^2 + y^2} \}$ o cone de vértice na origem e eixo-z. Então, para p = (0, 0, 0), $T_pM = \{(0, 0, 0)\}$.

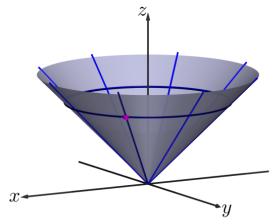


Fig. 12: Cone X de vértice na origem.

De fato, seja $\lambda: (-\epsilon,\epsilon) \longrightarrow X$ uma curva diferenciável em t=0 com $\lambda(0)=(0,0,0)$ e $\lambda'(0)=(\nu_1,\nu_2,\nu_3)$. Então, se $\lambda(t)=(\lambda_1(t),\lambda_2(t),\lambda_3(t)), \quad \lambda_3(t)=\sqrt{(\lambda_1(t))^2+(\lambda_2(t))^2}, \quad \nu_1=\lambda_1'(0)=\lim_{t\to 0}\frac{\lambda_1(t)}{t}$ e $\nu_2=\lambda_2'(0)=\lim_{t\to 0}\frac{\lambda_2(t)}{t}$.

Logo,

$$\nu_3 = \lim_{t \to 0^+} \frac{1}{t} \sqrt{(\lambda_1(t))^2 + (\lambda_2(t))^2} = \lim_{t \to 0^+} \sqrt{\frac{(\lambda_1(t))^2 + (\lambda_2(t))^2}{t^2}} = \sqrt{\nu_1^2 + \nu_2^2} \;,$$

е

$$\nu_3 = \lim_{t \to 0^-} \frac{1}{t} \sqrt{(\lambda_1(t))^2 + (\lambda_2(t))^2} = \lim_{t \to 0^-} - \sqrt{\frac{(\lambda_1(t))^2 + (\lambda_2(t))^2}{t^2}} = - \sqrt{\nu_1^2 + \nu_2^2} \;.$$

Portanto, $\sqrt{v_1^2 + v_2^2} = 0$, ou seja, $v_1 = v_2 = v_3 = 0$.

Exemplo 9.8. Seja Y a superfície de classe C^0 dada por Y = { $(x, y, z) \in \mathbb{R}^3 | z = |x|$ }. Então, para $p = (0, 0, 0), T_p Y = {(0, \beta, 0) | \beta \in \mathbb{R}}$ é um espaço vetorial de dimensão 1 (\neq 2) em \mathbb{R}^3 .

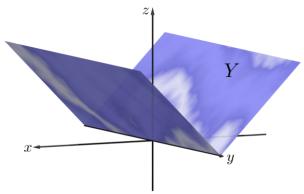


Fig. 13: Superfície Y.

De fato, seja $\lambda: (-\epsilon, \epsilon) \longrightarrow Y$, $\lambda(t) = (\lambda_1(t), \lambda_2(t), \lambda_3(t))$, uma curva diferenciável em t = 0 com $\lambda(0) = (0, 0, 0)$ e $\lambda'(0) = (\nu_1, \nu_2, \nu_3) = \nu$.

Então
$$\lambda_3(t) = |\lambda_1(t)|$$
 e $\nu_1 = \lambda_1'(0) = \lim_{t \to 0} \frac{\lambda_1(t)}{t}$.

Suponhamos que $\nu_1>0$. Então existe $0<\epsilon_0<\epsilon$ tal que $\lambda_1(t)>0$ para $t\in(0,\epsilon_0)$ e $\lambda_1(t)<0$ para $t\in(-\epsilon_0,0)$. Assim,

$$\nu_3 = \lambda_3'(0) = \lim_{t \to 0^\pm} \frac{\lambda_3(t)}{t} = \lim_{t \to 0^\pm} \frac{|\lambda_1(t)|}{t} = \lim_{t \to 0^\pm} \pm \frac{\lambda_1(t)}{t} = \pm \nu_1 \,.$$

Logo $v_1=0$, uma contradição. De modo análogo, podemos provar que v_1 não pode ser negativo.

Então $\nu_1=0$ e, portanto, $\nu_3=0$, ou seja, $\nu\in\{(0,\beta,0)\in\mathbb{R}^3\,|\,\beta\in\mathbb{R}\}.$

Reciprocamente, seja $\nu=(0,\beta,0)$, $\beta\in\mathbb{R}$. Então a curva $\lambda:\mathbb{R}\longrightarrow Y$, dada por $\lambda(t)=(0,\beta t\,0)$, é de classe C^∞ , $\lambda(0)=(0,0,0)$ e $\lambda'(0)=(0,\beta,0)$. Logo $(0,\beta,0)\in T_pY$ para todo $\beta\in\mathbb{R}$.

Assim,
$$T_pY=\{(0,\beta,0)\in\mathbb{R}^3\,|\,\beta\in\mathbb{R}\}.$$
 $_{\square}$

Definição 9.3. Seja $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ uma função diferenciável no aberto U. Dizemos que $c \in \mathbb{R}$ é um *valor regular de* f quando não existem pontos críticos de f no nível c, ou seja, grad $f(x) \neq 0$ para todo $x \in f^{-1}(c)$. Quando c é um valor regular de f, diz-se que o *nível* c é *regular*. Quando existem pontos críticos $x \in U$ tais que f(x) = c, dizemos que c é um *nível crítico de* f.

Observação 9.2. Se $f^{-1}(c) = \emptyset$, então c é um valor regular.

Exemplo 9.9. Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função de classe C^{∞} dada por $f(x,y) = x^2 + y^2$.

Como grad f(x,y) = (2x,2y) para todo $(x,y) \in \mathbb{R}^2$, temos que grad f(x,y) = (0,0) se, e só se, (x,y)=(0,0). Logo $f^{-1}(c)$ é um nível regular para todo $c\in\mathbb{R}-\{0\}$, pois f(0,0)=0. \square

Teorema 9.2. (Teorema Global da Função Implícita)

Sejam $f: U \subset \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ uma função de classe C^k , $k \ge 1$, definida no aberto U, e $c \in f(U)$ um valor regular de f. Então $M = f^{-1}(c)$ é uma hipersuperfície de classe C^k e

$$T_{\mathfrak{p}}M = \ker \mathrm{df}(\mathfrak{p}) = \{ \mathfrak{p} \in \mathbb{R}^{n+1} \mid \mathrm{df}(\mathfrak{p})(\mathfrak{p}) = 0 \} = \{ \mathfrak{p} \in \mathbb{R}^{n+1} \mid \langle \mathfrak{p}, \operatorname{\mathsf{grad}} f(\mathfrak{p}) \rangle = 0 \},$$

para todo $p \in M$.

Exemplo 9.10. Seja $f: \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ a função de classe C^{∞} dada por $f(x) = \langle x, x \rangle$. Como grad f(x) = 2x, pois $\frac{\partial f}{\partial x_i}(x) = 2x_i$, para todo i = 1, ..., n+1, grad f(x) = 0 se, e somente se, x=0, ou seja, se, e số se, f(x)=0. Assim, $f^{-1}(c)$ é um nível regular para todo $c\in\mathbb{R}-\{0\}$, sendo $f^{-1}(c)=\varnothing$, se c<0, e $f^{-1}(c)=S^n_{\sqrt{c}}(0)$, se c>0. Logo, pelo teorema acima, $S^n_{\sqrt{c}}$ é uma hipersuperfície de classe C^{∞} e

$$T_p S^n_{\sqrt{c}}(0) = \{ \nu \in \mathbb{R}^{n+1} \, | \, \langle \nu, 2p \rangle = 0 \} = [p]^\perp \,,$$

para todo $p \in S^n_{\sqrt{c}}(0)$.

Exemplo 9.11. Seja det : $\mathbb{R}^{n^2} = \mathbb{R}^n \times ... \times \mathbb{R}^n \longrightarrow \mathbb{R}$ a função de classe C^{∞} que associa a cada matriz $n \times n$, $X = (x_{ij})$, o seu determinante.

Como a expansão de det X pelas entradas da i-ésima linha é

$$\det X = \sum_{j=1}^{n} (-1)^{i+j} \, \chi_{ij} \, X_{[i,j]} \,,$$

onde $X_{[i,j]}$ é o determinante da matriz $(n-1) \times (n-1)$ que se obtém da matriz X omitindo a i-ésima linha e a j-ésima coluna, temos que $\frac{\partial\,det}{\partial x_{ii}}(X)=(-1)^{i+j}\,X_{[i,j]}\,,$

$$\frac{\partial\,\text{det}}{\partial x_{ij}}(X) = (-1)^{i+j}\,X_{[i,j]}\,,$$

para todo $X \in \mathbb{R}^{n^2}$ e todos $\mathfrak{i},\mathfrak{j}=1,\ldots,\mathfrak{n}.$

Em particular, no ponto X=I, temos $\frac{\partial \det}{\partial x_{ij}}(I)=\delta_{ij}$, $i,j=1,\ldots,n$, ou seja, o gradiente da função determinante no ponto I é a matriz identidade.

Seja $U = \{X \in \mathbb{R}^{n^2} \mid \det X \neq 0\}$ o conjunto aberto formado pelas matrizes $n \times n$ invertíveis. Então a restrição det : $U \longrightarrow \mathbb{R}$ é uma função C^{∞} sem pontos críticos. De fato, se $\frac{\partial \det}{\partial x_{ij}}(X) = 0$ para todo i, j = 1, ..., n, então

$$\det X = \sum_{i=1}^{n} (-1)^{i+j} \, x_{ij} \, X_{[i,j]} = 0 \,,$$

e, portanto, $X \notin U$. Logo todo $c \in \mathbb{R}$ é um valor regular para a função det : $U \to \mathbb{R}$.

Em particular,

$$M = det^{-1}(1) =$$
(conjunto das matrizes $n \times n$ que têm determinante igual a 1)

é uma hipersuperfície de classe C^{∞} em \mathbb{R}^{n^2} . M é um grupo relativamente à multiplicação de matrizes, conhecido como o *grupo unimodular* de \mathbb{R}^n .

O espaço tangente $T_I(M)$ de M no ponto I é o subespaço de dimensão n^2-1 de \mathbb{R}^{n^2} formado pelas matrizes $n \times n$ de traço nulo, pois grad(det(I)) = I e, portanto,

$$T_I M = \left\{ \left. X \in \mathbb{R}^{n^2} \, \right| \, \langle X, I \rangle = \sum_{i,j=1}^n x_{ij} \, \delta_{ij} = \sum_{i=1}^n x_{ii} = \text{traço} \, X = 0 \right\} \, . \, \, \square$$

Observação 9.3. Toda hipersuperfície $M \subset \mathbb{R}^{n+1}$, sendo localmente o gráfico de uma função $x_i = \xi(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}) = \xi(x^\star)$, de n variáveis, é também localmente a imagem inversa $f^{-1}(0)$ do valor regular 0 da função $f(x) = x_i - \xi(x^\star)$, definida no aberto $V \subset \mathbb{R}^{n+1}$ tal que $V \cap M$ é o gráfico de ξ , pois $\frac{\partial f}{\partial x_i}(x) = 1$ para todo $x \in V$ e $f^{-1}(0) = \{x \in V \mid x_i = \xi(x^\star)\} = V \cap M$.

Para isso, estamos supondo $V=\prod_{j=1}^{n+1}I_j$, onde cada I_j é um intervalo aberto, e $U=\prod_{j\neq i}I_j$ é o domínio da função ξ .

Mas não é verdade que toda hipersuperfície $M \subset \mathbb{R}^{n+1}$ seja globalmente a imagem inversa de um valor regular, pois se $M = f^{-1}(c)$, a aplicação $\phi = \operatorname{grad} f : M \longrightarrow \mathbb{R}^{n+1}$ fornece *um campo contínuo de vetores normais não-nulos ao longo de M*, uma vez que $\phi(\mathfrak{p}) = \operatorname{grad} f(\mathfrak{p}) \perp \nu$ para todo $\nu \in T_\mathfrak{p} M$. As hipersuperfícies que admitem um campo contínuo de vetores normais não-nulos $\phi : M \longrightarrow \mathbb{R}^{n+1}$ chamam-se *hipersuperfícies orientáveis*. Mas nem toda hipersuperfície em \mathbb{R}^{n+1} é orientável, como a faixa de Möbius em \mathbb{R}^3 (ver §14, Cap. V).

Portanto, existem hipersuperfícies em \mathbb{R}^{n+1} que não são globalmente a imagem inversa de um valor regular.

Lema 9.1. Sejam $X \subset \mathbb{R}^m$, $K \subset \mathbb{R}^k$ compacto, $f: X \times K \longrightarrow \mathbb{R}^p$ contínua e $c \in \mathbb{R}^p$. Se $f^{-1}(c)$ é o gráfico de uma aplicação $\xi: X \longrightarrow K$ (isto é, para todo $x \in X$ existe um único $y = \xi(x) \in K$ tal que $f(x, \xi(x)) = c$) então ξ é contínua.

Prova.

Dado $x_0 \in X$, seja $y_0 = \xi(x_0) \in K$ e seja $\{x_n\}$ uma sequência de pontos de X tal que $x_n \longrightarrow x_0$.

Queremos provar que $\lim_{n\to\infty} \xi(x_n) = y_0$.

Como a sequência $\{\xi(x_n)\}$ é limitada, pois $\xi(x_n) \in K$ para todo $n \in \mathbb{N}$, basta mostrar que toda subsequência $\{\xi(x_n)\}_{n \in \mathbb{N}'}$ convergente em \mathbb{R}^k tem limite y_0 .

Seja $\mathbb{N}'\subset\mathbb{N}$ tal que $\lim_{n\in\mathbb{N}'}\xi(x_n)=y$. Então $y\in K$, pois K é compacto. Além disso, como f é contínua e $f(x_n,\xi(x_n))=c$ para todo $n\in\mathbb{N}$, temos $c=\lim_{n\in\mathbb{N}'}f(x_n,\xi(x_n))=f(x_0,y)$.

Logo $f(x_0, y) = f(x_0, y_0)$ e, portanto, pela unicidade, $y = y_0$.

Observação 9.4. Supondo K apenas limitado, o lema acima nem sempre é válido. Por exemplo, seja $f: \mathbb{R} \times [0,1) \longrightarrow \mathbb{R}$ a função contínua definida por $f(x,y) = (x^2 + y^2)(ye^{|x|} - 1)$. Então, para cada $x \in \mathbb{R}$, existe um único $y \in [0,1)$ tal que f(x,y) = 0, pois se x = 0, então y = 0, uma vez que $1 \notin [0,1)$, e se $x \neq 0$, $y = e^{-|x|} \in [0,1)$.

Logo $f^{-1}(0)$ é o gráfico da função $\xi: \mathbb{R} \longrightarrow [0,1)$ dada por $\xi(0)=0$ e $\xi(x)=e^{-|x|}$, se $x\in \mathbb{R}-\{0\}$, que não é contínua em x=0.

No teorema abaixo, representaremos os pontos de \mathbb{R}^{n+1} por pares (x,y), onde $x\in\mathbb{R}^n$ e $y\in\mathbb{R}$.

Teorema 9.3. (Teorema da Função Implícita)

Seja $f:U\longrightarrow \mathbb{R}$ uma função de classe C^k , $k\ge 1$, definida num aberto $U\subset \mathbb{R}^{n+1}$. Seja $\mathfrak{p}=(x_0,y_0)\in U$ tal que $f(\mathfrak{p})=c$ e $\frac{\partial f}{\partial u}(\mathfrak{p})\ne 0$.

Então existem uma bola aberta $B=B_{\delta}(x_0)\subset\mathbb{R}^n$ e um intervalo aberto $J=(y_0-\epsilon,y_0+\epsilon)$ tais que $B\times \overline{J}\subset U$ e $f^{-1}(c)\cap (B\times J)$ é o gráfico de uma função $\xi:B\longrightarrow J$ de classe C^k (isto é, para todo $x\in B$ existe um único $y=\xi(x)\in J$ tal que f(x,y)=c).

Para cada $x \in B$, tem-se:

$$\frac{\partial \xi}{\partial x_i}(x) = \frac{-\frac{\partial f}{\partial x_i}(x,\xi(x))}{\frac{\partial f}{\partial y}(x,\xi(x))}, \quad i = 1,\dots,n.$$

A função $y = \xi(x)$ diz-se definida implicitamente no aberto $U \times J$ pela equação f(x,y) = c.

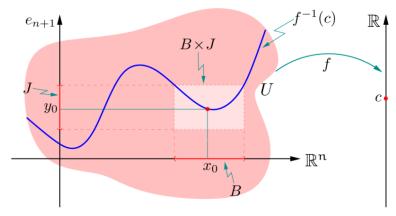


Fig. 14: Função $y = \xi(x)$ definida implicitamente no aberto $U \times J$.

Prova.

Suponhamos que $\frac{\partial f}{\partial y}(x_0,y_0)>0$. Como $\frac{\partial f}{\partial y}:U\longrightarrow \mathbb{R}$ é contínua, existem $\delta'>0$ e $\epsilon>0$, tais que $B'\times \overline{J}\subset U$ e $\frac{\partial f}{\partial y}(x,y)>0$ para todo $(x,y)\in B'\times \overline{J}$, onde $B'=B_{\delta'}(x_0)$ e $J=(y_0-\epsilon,y_0+\epsilon)$. Então, para todo $x\in B'$, a função $y\longmapsto f(x,y)$ é estritamente crescente no intervalo

Então, para todo $x \in B'$, a função $y \longmapsto f(x,y)$ é estritamente crescente no intervalo $\overline{J} = [y_0 - \varepsilon, y_0 + \varepsilon]$. Como $f(x_0, y_0) = c$, temos que $f(x_0, y_0 - \varepsilon) < c$ e $f(x_0, y_0 + \varepsilon) > c$.

Pela continuidade de f, existe $0<\delta<\delta'$ tal que $f(x,y_0-\epsilon)< c$ e $f(x,y_0+\epsilon)> c$ para todo $x\in B=B_\delta(x_0).$ Então, pelo Teorema do Valor Intermediário, existe, para cada $x\in B$, um único $y=\xi(x)\in \overline{J}$ tal que f(x,y)=c. Logo $y=\xi(x)\in J$ e $f^{-1}(c)\cap (B\times \overline{J})=f^{-1}(c)\cap (B\times J)$ é o gráfico de uma função $\xi:B\longrightarrow J$ a qual, pelo lema anterior, é contínua.

Mostraremos agora que, em todo ponto $x \in B$, existem as derivadas parciais de ξ .

Seja $x \in B$ e tome $k = k(t) = \xi(x + te_i) - \xi(x)$. Então,

$$\xi(x + te_i) = \xi(x) + k$$
 e $f(x + te_i, \xi(x) + k) = f(x, \xi(x)) = c$,

para todo $t \in (-\delta_0, \delta_0)$, onde δ_0 foi escolhido de modo que $x + te_i \in B$ para todo $t \in (-\delta_0, \delta_0)$.

Pelo Teorema do Valor Médio, para todo $t \in (-\delta_0, \delta_0)$, existe $\theta = \theta(t) \in (0, 1)$ tal que:

$$0 = f(x + te_i, \xi(x) + k) - f(x, \xi(x)) = \frac{\partial f}{\partial x_i}(x + \theta te_i, \xi(x) + \theta k)t + \frac{\partial f}{\partial y}(x + \theta te_i, \xi(x) + \theta k)k.$$

Logo,

$$\frac{\xi(x+te_i)-\xi(x)}{t}=\frac{k}{t}=-\frac{\frac{\partial f}{\partial x_i}(x+\theta te_i,\xi(x)+\theta k)}{\frac{\partial f}{\partial y}(x+\theta te_i,\xi(x)+\theta k)}.$$

Pela continuidade de ξ , $\lim_{t\to 0} k(t)=0$. Então, pela continuidade das derivadas parciais de f, a derivada parcial $\frac{\partial \xi}{\partial x_i}(x)$ existe e é igual a

$$\frac{\partial \xi}{\partial x_{i}}(x) = -\frac{\frac{\partial f}{\partial x_{i}}(x, \xi(x))}{\frac{\partial f}{\partial y}(x, \xi(x))} \tag{I}$$

para todo i = 1, ..., n.

Como f é de classe C^1 e ξ é contínua, temos, por (I), que $\frac{\partial \xi}{\partial x_i}$ é contínua para todo $i=1,\ldots,n$, ou seja, ξ é de classe C^1 .

Suponhamos, por indução, que se f é de classe C^{k-1} , então ξ é de classe C^{k-1} , $k-1 \geq 1$.

Seja $f \in C^k$. Então ξ é de classe C^{k-1} e as derivadas parciais de f são de classe C^{k-1} .

Assim, por (I), $\frac{\partial \xi}{\partial x_i}$ é de classe C^{k-1} para todo $i=1,\ldots,n,$ ou seja, ξ é de classe C^k .

Observação 9.5. No teorema da função implícita, não há nada especial a respeito da última variável. Ou seja, vale o seguinte resultado:

Seja $f:U\longrightarrow \mathbb{R}$ uma função de classe C^k definida no aberto $U\subset \mathbb{R}^{n+1}$. Se um ponto $\mathfrak{p}=(x_1^0,\dots,x_{n+1}^0)\in U$ é tal que $f(\mathfrak{p})=c$ e $\frac{\partial f}{\partial x_i}(\mathfrak{p})\neq 0$ para algum $i=1,\dots,n+1$, então existe $\epsilon>0$

$$\textit{tal que } V = \prod_{k=1}^{n+1} (x_k^0 - \epsilon, x_k^0 + \epsilon) \subset U \textit{ e uma função } \xi : B = \prod_{\substack{k=1 \\ k \neq i}}^{n+1} (x_k^0 - \epsilon, x_k^0 + \epsilon) \longrightarrow (x_i^0 - \epsilon, x_i^0 + \epsilon)$$

de classe C^k cujo gráfico é $f^{-1}(c) \cap V$, ou seja, o conjunto $f^{-1}(c) \cap V$ é dado por:

$$\left\{(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\,|\,(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1})\in B\ \text{\boldsymbol{e}}\ \xi(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1})=x_i\right\}.$$

Além disso,

$$\frac{\partial \xi}{\partial x_j}(x^\star) = -\frac{\frac{\partial f}{\partial x_j}(x_1, \dots, x_{i-1}, \xi(x^\star), x_{i+1}, \dots, x_{n+1})}{\frac{\partial f}{\partial x_i}(x_1, \dots, x_{i-1}, \xi(x^\star), x_{i+1}, \dots, x_{n+1})},$$

 $\textit{para todo } x \in B \textit{ e todo } j = 1, \ldots, n+1 \textit{ , } \quad j \neq i \textit{, onde } x^{\star} = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}).$

Corolário 9.1. Seja $f:U\longrightarrow \mathbb{R}$ uma função de classe C^k , $k\ge 1$, no aberto $U\subset \mathbb{R}^{n+1}$. Se $\xi:W\longrightarrow \mathbb{R}$ é contínua no aberto $W\subset \mathbb{R}^n$ com $(x,\xi(x))\in U$, $\frac{\partial f}{\partial y}(x,\xi(x))\ne 0$ e $f(x,\xi(x))=c$ para todo $x\in W$, então ξ é de classe C^k .

Observação 9.6. No corolário acima, não basta supor que c é um valor regular de f. Por exemplo, seja a função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe C^{∞} , dada por $f(x,y) = x - y^3$. Então, como grad $f(x,y) = (1,-3y^2)$, todo $c \in \mathbb{R}$ é valor regular de f, mas a função contínua $\xi: \mathbb{R} \longrightarrow \mathbb{R}$, dada por $\xi(x) = \sqrt[3]{x}$, satisfaz $f(x,\xi(x)) = 0$ para todo $x \in \mathbb{R}$ e não é diferenciável na origem.

Observe que $\frac{\partial f}{\partial y}(x,0) = 0$ para todo $x \in \mathbb{R}$.

Prova.

(do Teorema Global da Função Implícita)

Seja $p \in f^{-1}(c)$. Como grad $f(p) \neq 0$, existe $i \in \{1, \dots, n+1\}$ tal que $\frac{\partial f}{\partial x_i}(p) \neq 0$. Logo, pelo teorema da função implícita, existe um aberto $V \subset \mathbb{R}^{n+1}$ tal que $p \in V$ e $V \cap f^{-1}(c)$ é o gráfico de uma função de classe C^k definida num aberto de \mathbb{R}^n . Então $M = f^{-1}(c)$ é uma hipersuperfície de classe C^k .

Seja $\nu \in T_pM$. Então existe uma curva $\lambda: (-\epsilon,\epsilon) \longrightarrow M$ diferenciável em t=0 tal que $\lambda(0)=p$ e $\lambda'(0)=\nu$. Logo $df(p)\nu=(f\circ\lambda)'(0)=0$, pois $f(\lambda(t))=c$ para todo $t\in(-\epsilon,\epsilon)$. Assim, $\langle \operatorname{grad} f(p),\nu\rangle=0$ para todo $\nu\in T_pM$, ou seja, $T_pM\subset[\operatorname{grad} f(p)]^\perp$ e, portanto, $T_pM=[\operatorname{grad} f(p)]^\perp$, pois $\dim T_pM=\dim[\operatorname{grad} f(p)]^\perp=n$.

10 Multiplicador de Lagrange

Seja $M \subset \mathbb{R}^{n+1}$ uma hipersuperfície de classe C^k , $k \geq 1$, contida num aberto $U \subset \mathbb{R}^{n+1}$, e $f: U \longrightarrow \mathbb{R}$ uma função de classe C^k .

Os pontos críticos de $f:U\longrightarrow\mathbb{R}$ são, como já definimos anteriormente, os pontos $x\in U$ tais que grad f(x)=0, ou seja, $\frac{\partial f}{\partial \nu}(x)=0$ para todo $\nu\in\mathbb{R}^{n+1}$. Isto equivale a dizer que $(f\circ\lambda)'(0)=0$ para todo caminho $\lambda:(-\varepsilon,\varepsilon)\longrightarrow U$ diferenciável em t=0 tal que $\lambda(0)=x$.

Por analogia, daremos a seguinte definição:

Definição 10.1. Dizemos que $p \in M$ é um ponto crítico de $f|_M$ se $(f \circ \lambda)'(0) = 0$ para todo caminho $\lambda: (-\epsilon, \epsilon) \longrightarrow M$ diferenciável em t = 0 com $\lambda(0) = p$. Isto significa que $\frac{\partial f}{\partial \nu}(p) = 0$ para todo $\nu \in T_pM$, ou seja, $p \in M$ é um ponto crítico de $f|_M$ se, e só se, $\langle \operatorname{grad} f(p), \nu \rangle = 0$ para todo $\nu \in T_pM$, ou ainda, se, e somente se, o vetor $\operatorname{grad} f(p)$ é normal à hipersuperfície M no ponto p.

Observação 10.1. Se $\mathfrak{p} \in M$ é um ponto de máximo ou de mínimo local de $f|_{M}$, então \mathfrak{p} é um ponto crítico de $f|_{M}$, pois para toda curva $\lambda: (-\varepsilon, \varepsilon) \longrightarrow M$ diferenciável em t=0 com $\lambda(0)=\mathfrak{p}, 0$ é ponto de máximo ou de mínimo local da função real $f\circ\lambda: (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}$ e, portanto, $df(\mathfrak{p})\mathfrak{v}=(f\circ\lambda)'(0)=0$.

Observação 10.2. Todo ponto crítico de f em U que pertence a M é um ponto crítico de $f|_M$, pois, neste caso, grad f(p) = 0 e, portanto, $\langle \operatorname{grad} f(p), \nu \rangle = 0$ para todo $\nu \in \mathbb{R}^{n+1}$.

Mas pode existir um ponto crítico de $f|_{M}$ que não é ponto crítico de f em U, isto é, no qual grad f não se anula.

Exemplo 10.1. Sejam $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ a função de classe C^{∞} dada por f(x,y) = y, e $M = S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. Então f não possui ponto crítico, pois grad $f(x,y) = (0,1) \neq (0,0)$ para todo $(x,y) \in \mathbb{R}^2$. Mas (0,-1) e (0,1) são pontos críticos de $f|_M$, pois (0,-1) é o ponto de máximo de $f|_M$.

Em geral, se a hipersuperfície $M \subset \mathbb{R}^{n+1}$ é compacta, então $f|_M$ admite pelo menos dois pontos críticos: os pontos onde $f|_M$ assume seus valores máximo e mínimo. \square

Teorema 10.1. (do Multiplicador de Lagrange)

Sejam $\varphi: U \subset \mathbb{R}^{n+1} \longrightarrow \mathbb{R}$ uma função de classe C^k , $M = \varphi^{-1}(c)$, onde $c \in \varphi(U)$ é um valor regular de φ , e f : $U \longrightarrow \mathbb{R}$ uma função de classe C^k . Um ponto $\mathfrak{p} \in M$ é ponto crítico de f|M| se, e só se, existe um número real $\lambda \in \mathbb{R}$ tal que grad $f(\mathfrak{p}) = \lambda$ grad $\varphi(\mathfrak{p})$.

Prova.

Para todo ponto $p \in M$, temos $T_pM = [grad \, \phi(p)]^{\perp}$, pois M é uma hipersuperfície de nível de ϕ . Além disso, p é ponto crítico de $f|_M$ se, e só se, $grad \, f(p) \perp T_pM$.

Como $T_pM\subset \mathbb{R}^{n+1}$ é um subespaço vetorial de dimensão n, temos que $\mathfrak{p}\in M$ é ponto crítico de $f|_M$ se, e só se, grad $f(\mathfrak{p})$ é um múltiplo de grad $\phi(\mathfrak{p})$.

A pesquisa dos pontos críticos de $f|_{\mathsf{M}}$ reduz-se, portanto, a resolver o sistema de n+2 equações

$$\begin{cases} \frac{\partial f}{\partial x_i}(p) = \lambda \, \frac{\partial \phi}{\partial x_i}(p) \,, & i=1,\ldots,n+1 \,, \\ \phi(p) = c \,, \end{cases}$$

nas n+2 incógnitas $\lambda, x_1, \ldots, x_{n+1}$, onde $p=(x_1, \ldots, x_{n+1})$. O número λ chama-se o *multiplica-dor de Lagrange*.

Observação 10.3. A condição grad $f(p) = \lambda$ grad $\phi(p)$ significa que a hipersuperfície M é tangente à hipersuperfície de nível de f que passa pelo ponto crítico p da função $f|_M$. No caso em que se podem esboçar as superfícies de nível da função f, esta observação auxilia a localizar os pontos críticos (ver exemplo abaixo).

Observação 10.4. Quando a hipersuperfície M não é dada como imagem inversa $\varphi^{-1}(c)$ de um valor regular, os pontos críticos de $f|_M$ são simplesmente os pontos $p \in M$ nos quais grad f(p) é normal a M, ou seja, grad $f(p) \perp v$ para todo $v \in T_pM$.

Exemplo 10.2. Seja $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ a função de classe C^∞ dada por $f(x,y)=\alpha x+by$, com $\alpha^2+b^2\neq 0$, e seja $S^1=\phi^{-1}(1)$, onde $\phi:\mathbb{R}^2\longrightarrow\mathbb{R}$ é dada por $\phi(x,y)=x^2+y^2$. Como 1 é valor

regular de ϕ , os pontos críticos de $f|_{S^1}$ são os pontos $(x,y) \in S^1$ onde grad f(x,y) = (a,b) e grad $\phi(x,y) = (2x,2y)$ são múltiplos. Então $(a,b) = \lambda(x,y)$ e $x^2 + y^2 = 1$. Isto nos dá

$$x = \frac{a}{\sqrt{a^2 + b^2}} e y = \frac{b}{\sqrt{a^2 + b^2}},$$

ou

$$x = -\frac{a}{\sqrt{a^2 + b^2}} e y = -\frac{b}{\sqrt{a^2 + b^2}}.$$

Nestes pontos, $f|_{S^1}$ assume, respectivamente, seu valor máximo igual à $\sqrt{a^2+b^2}$, e seu valor mínimo igual a $-\sqrt{a^2+b^2}$, pois

$$|f(x,y)| \leq \sqrt{\alpha^2 + b^2} \text{ para todo } (x,y) \in S^1. \ _{\square}$$

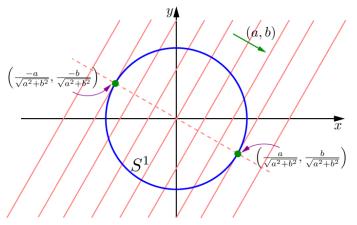


Fig. 15: Pontos críticos de $f|_{S^1}$.

Exemplo 10.3. Dados uma hipersuperfície $M \subset \mathbb{R}^{n+1}$ e um ponto $b \in \mathbb{R}^{n+1}$ tal que $b \notin M$, determinar o ponto $p \in M$ mais próximo a b. No caso em que M é fechada, um tal ponto sempre existe.

Consideremos a função $f: \mathbb{R}^{n+1} - \{b\} \longrightarrow \mathbb{R}$ de classe C^{∞} dada por $f(x) = \|x-b\|$. Os pontos onde $f|_{M}$ assume seu valor mínimo, caso existam, estão entre os pontos críticos de $f|_{M}$, isto é, entre os pontos $x \in M$ onde grad f(x) é normal a M. Como grad $f(x) = \frac{x-b}{\|x-b\|}$, pois $\frac{\partial f}{\partial x_i}(x) = \frac{x_i-b_i}{\|x-b\|}$, para todo $i=1,\ldots,n$, os pontos críticos de $f|_{M}$, entre os quais se encontram os pontos de M situados a uma distância mínima do ponto b, são os pontos $x \in M$ tais que x-b é normal a M. \square

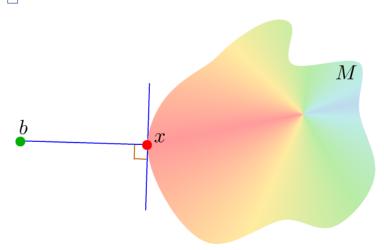


Fig. 16: x - b é normal a M.

Exemplo 10.4. Seja $A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma transformação linear *autoadjunta*, isto é, $\langle Ax, y \rangle = \langle x, Ay \rangle$ para quaisquer $x, y \in \mathbb{R}^n$. Isto equivale a dizer que a matriz (a_{ij}) de A com respeito à base canônica é simétrica, pois $a_{ij} = \langle Ae_i, e_i \rangle = \langle Ae_i, e_j \rangle = a_{ji}$.

Um número real λ é um *autovalor* de A quando existe um vetor $y \in \mathbb{R}^n - \{0\}$ tal que $Ay = \lambda y$. E os *autovetores associados ao autovalor* λ são os vetores $x \in \mathbb{R}^n$ tais que $Ax = \lambda x$.

Em geral, uma transformação linear $A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ não precisa ter autovalores reais, como a rotação de ângulo $\theta \in (0,\pi)$ no plano.

Afirmação: Se $A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é uma transformação linear autoadjunta, então existe uma base ortonormal de \mathbb{R}^n formada por autovetores de A.

De fato, seja $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ a forma quadrática dada por $f(x) = \langle Ax, x \rangle$ ou, em termos de coordenadas, $f(x) = \sum_{i = 1}^n \alpha_{ij} x_i x_j$.

Para determinarmos uma base ortonormal de autovetores de A estudaremos os pontos críticos

de f na esfera unitária $S^{n-1}\subset\mathbb{R}^n$. Como $S^{n-1}=\phi^{-1}(1)$, onde 1 é valor regular da função $\phi(x)=\langle x,x\rangle$, temos que $x\in S^{n-1}$ é um ponto crítico de $f|_{S^{n-1}}$ se, e só se, os vetores grad f(x) e grad $\phi(x)=2x$ são múltiplos. Sendo $\frac{\partial f}{\partial x_i}(x)=2\sum_{j=1}^n\alpha_{ij}x_j$, temos que grad f(x)=2Ax. Logo os pontos críticos de $f|_{S^{n-1}}$ são os pontos $u\in S^{n-1}$ tais que $Au=\lambda u$ e, num tal ponto, temos $f(u)=\langle \lambda u,u\rangle=\lambda$, pois $\langle u,u\rangle=1$.

Provamos, assim, que dada a forma quadrática $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, $f(x) = \langle Ax, x \rangle$, onde $A: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ é autoadjunta, um ponto $u \in S^{n-1}$ é um ponto crítico de $f|_{S^{n-1}}$ se, e só se, $Au = \lambda u$, onde $\lambda = f(u)$. Ou seja, $\lambda = f(u)$ é um autovalor de A e u é um autovetor de norma 1 associado ao autovalor λ .

Em particular, se λ_1 é o valor máximo de f no compacto S^{n-1} atingido no ponto $u_1 \in S^{n-1}$, então λ_1 é o maior autovalor de A e $Au_1 = \lambda_1 u_1$.

Seja $E = \{x \in \mathbb{R}^n \mid \langle x, u_1 \rangle = 0\}$ o complemento ortogonal do vetor u_1 . Se $x \in E$, então $\langle Ax, u_1 \rangle = \langle x, Au_1 \rangle = \lambda_1 \langle x, u_1 \rangle = 0$. Logo $A(E) \subset E$ e, portanto, por restrição, obtemos uma transformação linear autoadjunta $A : E \longrightarrow E$.

Seja λ_2 o valor máximo da forma quadrática f entre os vetores unitários pertencentes a E, e seja $u_2 \in E$ tal que $|u_2| = 1$ e $f(u_2) = \lambda_2$. Então λ_2 é um autovalor de A e $Au_2 = \lambda_2 u_2$.

Prosseguindo desta maneira, obtemos uma base ortonormal de \mathbb{R}^n , $\{u_1, u_2, \dots, u_n\}$, formada por autovetores de A. \square

Exemplo 10.5. A *média geométrica* de n números reais positivos x_1, \ldots, x_n é menor do que ou igual à *média aritmética* destes números, isto é,

$$\sqrt[n]{\chi_1 \cdot \ldots \cdot \chi_n} \leq \frac{\chi_1 + \ldots + \chi_n}{n}$$
,

e a igualdade vale se, e só se, $x_1 = ... = x_n$.

De fato, sejam x_1,\ldots,x_n n números reais positivos, $f:\mathbb{R}^n\longrightarrow\mathbb{R}$ a função de classe C^∞ dada por $f(y_1,\ldots,y_n)=y_1\cdot\ldots\cdot y_n$ e $c=x_1+\ldots+x_n$.

Vamos determinar o valor máximo de f na hipersuperfície

$$M_c = \{(y_1, \dots, y_n) \in \mathbb{R}^n \, | \, y_1 + \dots + y_n = c \; , \; y_1 > 0, \dots, y_n > 0 \} \, .$$

Consideremos o aberto $U=\{(y_1,\ldots,y_n)\in\mathbb{R}^n|y_1>0,\ldots,y_n>0\}$ e a função $\phi:U\longrightarrow\mathbb{R}$ de classe C^∞ dada por $\phi(y_1,\ldots,y_n)=y_1+\ldots+y_n$.

Então $\phi^{-1}(c)=M_c$ é uma hipersuperfície de classe C^∞ de \mathbb{R}^n , pois grad $\phi(y)=(1,1,\ldots,1)\neq (0,0,\ldots,0)$ para todo $y\in U$.

Como \overline{M}_c é compacto, pois $\overline{M}_c \subset [0,c] \times \ldots \times [0,c]$, existe $z \in \overline{M}_c$ tal que f(z) é o valor máximo de $f|_{\overline{M}_c}$. Então $z \in M_c$, pois f(y) = 0 para todo $y \in \overline{M}_c - M_c$ e f(y) > 0 para todo $y \in M_c$.

Sendo $\frac{\partial f}{\partial y_i}(y) = \prod_{\substack{j=1 \ i \neq i}}^n y_j$, para todo $i=1,\ldots,n$, temos, pelo método do multiplicador de La-

grange, que grad $f(z)=\lambda$ grad $\phi(z)=(\lambda,\ldots,\lambda)$. Então $z_1+\ldots+z_n=c,\ z_i>0$ e $\prod_{j\neq i}z_j=\lambda,$ para todo $i=1,\ldots,n.$

Afirmação: Se $z_1, \ldots, z_n \in \mathbb{R} - \{0\}$ e $\prod_{\substack{j=1 \ j \neq i}}^n z_j = \lambda$ para todo $i = 1, \ldots, n$, então $z_1 = \ldots = z_n$.

Vamos provar esta afirmação por indução sobre n.

Se n = 2, é claro que $z_1 = z_2$.

Suponhamos o resultado válido para $n-1,\,n-1\geq 2$. Sejam z_1,\ldots,z_n n números reais nãonulos tais que $\prod_{\begin{subarray}{c}j=1\\j\neq i\end{subarray}}^n z_j = \lambda$ para todo $i=1,\ldots,n$. Como, para todos $i,i'\in\{1,\ldots,n-1\}$,

 $i\neq i', \quad \prod_{\substack{j=1\\j\neq i}}^n z_j = \prod_{\substack{j=1\\j\neq i'}}^n z_j \text{, e } z_n \neq 0 \text{, temos } \prod_{\substack{j=1\\j\neq i}}^{n-1} z_j = \prod_{\substack{j=1\\j\neq i'}}^{n-1} z_j \text{. Logo, pela hipótese de indução,}$

Então $z_1 = z_2 = \ldots = z_{n-1} = z_n$, provando a afirmação.

Como $z_1 + \ldots + z_n = c$, temos $z_1 = \ldots = z_n = \frac{c}{n}$.

 $\text{Logo } f(x_1,\ldots,x_n) \leq f(z_1,\ldots,z_n) = \left(\frac{c}{n}\right)^n \text{, pois } (x_1,\ldots,x_n) \in M_c. \text{ Assim,}$

$$x_1 \dots x_n \le \left(\frac{x_1 + \dots + x_n}{n}\right)^n$$
,

ou seja,

$$\sqrt[n]{x_1\dots x_n} \leq \frac{x_1+\dots+x_n}{n}$$
 ,

para quaisquer números reais positivos x_1, \dots, x_n , e a igualdade vale se, e só se, $x_1 = \dots = x_n$.

Exemplo 10.6. (Desigualdade de Hadamard)

Se X é uma matriz $n \times n$ cujas linhas são os vetores $X_i = (x_{i1}, \dots, x_{in})$, então

$$|\det X| \leq \|X_1\| \dots \|X_n\|,$$

onde | | | é a norma Euclidiana.

Se $\det X = 0$, a desigualdade é evidente. Se $\det X \neq 0$, então todos os vetores-linhas são nãonulos. Neste caso, podemos considerar os vetores unitários $W_i = \frac{X_i}{\|X_i\|}, \ i=1,\dots,n.$ Então, como $X_i = \|X_i\|W_i$, temos que det $X = \|X_1\|\dots\|X_n\|$ det W, onde W é a matriz cujas linhas são os vetores unitários W_1, \ldots, W_n . A desigualdade ficará provada se mostrarmos que $|\det W| \le 1$. Mais geralmente:

Afirmação: Se $W=(w_{ij})$ é uma matriz $n\times n$ tal que $\sum_{i=1}^n w_{ij}^2=n$ então $|\det W|\leq 1$.

De fato, sejam f, $\phi:\mathbb{R}^{n^2}\longrightarrow\mathbb{R}$ as funções de classe C^∞ dadas por f(X) = det X e $\phi(X) = \sum_{i=1}^n (x_{ij})^2. \text{ Então, para todos } i,j = 1,\ldots,n, \ \frac{\partial \phi}{\partial x_{ij}}(X) = 2x_{ij} \text{ e } \frac{\partial f}{\partial x_{ij}}(X) = (-1)^{i+j} X_{[i,j]},$ onde $X_{[i,j]}$ é o determinante da matriz $(n-1) \times (n-1)$, obtida de X pela omissão da i-ésima linha e da j-ésima coluna.

Assim, para todo $n \in \mathbb{N}$, $\phi^{-1}(n) = M$ é uma hipersuperfície compacta de classe C^{∞} em \mathbb{R}^{n^2} . Mais precisamente, M é a esfera em \mathbb{R}^{n^2} de centro na origem e raio \sqrt{n} .

Então, pelo método do Multiplicador de Lagrange, uma matriz $W = (w_{ij})$ é um ponto crítico de $\mathsf{f}|_{\mathsf{M}} \text{ se, e s\'o se, } \sum_{i:j}^n w_{ij}^2 = n \text{ e grad } \mathsf{f}(W) = \lambda \text{ grad } \phi(W) \text{ para algum } \lambda \text{ real, ou seja,}$

$$(-1)^{i+j}W_{[i,j]} = 2\lambda w_{ij},$$
 (*)

para quaisquer i, j = 1, ..., n.

Multiplicando por w_{ij} , somando e levando em conta a expansão de um determinante em relação às entradas de uma linha, temos:

$$n \det W = \sum_{i,j=1}^{n} (-1)^{i+j} w_{ij} W_{[i,j]} = 2\lambda \sum_{i,j=1}^{n} w_{ij}^2 = 2\lambda n.$$

Logo det $W = 2\lambda$.

Multiplicando agora (*) por w_{ij} , fixando i e somando em relação a j, obtemos:

$$\det W = \sum_{j=1}^n (-1)^{i+j} w_{ij} W_{[i,j]} = 2\lambda \sum_{j=1}^n w_{ij}^2 = (\det W) \sum_{j=1}^n w_{ij}^2 \,.$$

Se W é uma matriz onde $f|_M$ atinge seu valor máximo ou mínimo, então $\det W \neq 0$ e, pela igualdade acima, $\|X_i\|^2 = \sum_{i=1} w_{ij}^2 = 1$ para todo $i=1,\ldots,n$, ou seja, os vetores-linha têm norma igual a 1.

Multiplicando (*) por
$$w_{kj}$$
, $k \neq i$, e somando em relação a j, temos:
$$\sum_{i=1}^n (-1)^{i+j} w_{kj} W_{[i,j]} = 2\lambda \sum_{j=1}^n w_{kj} w_{ij} = 2\lambda \langle W_k, W_i \rangle \,.$$

Logo $\langle W_k,W_i\rangle=0$ para $k\neq i$, pois $\sum_{j=1}^n (-1)^{i+j}w_{kj}W_{[i,j]}=0$, por ser o desenvolvimento, em relação à i-ésima linha, do determinante de uma matriz com duas linhas (a i-ésima e a k-ésima) iguais a W_k .

Assim, todo ponto $W \in M$ onde $f|_M$ atinge seu valor máximo ou mínimo é uma matriz cujas linhas são vetores unitários dois a dois ortogonais, ou seja W é uma matriz ortogonal. Logo $\det W = +1$, se W é um ponto de máximo, e $\det W = -1$, se W é um ponto de mínimo. Então $-1 \le \det W \le 1$ para todo $W \in M$, ou seja, $-\|X_1\| \dots \|X_n\| \le \det X \le \|X_1\| \dots \|X_n\|$ para toda matriz X.

E a igualdade $|\det X| = \|X_1\| \dots \|X_n\|$ ocorre se, e só se, X_1, \dots, X_n são vetores dois a dois ortogonais, no caso em que $\det X \neq 0$. \square

Observação 10.5. O valor absoluto de $\det X$ é o volume do paralelepípedo $\mathfrak n$ —dimensional determinado pelos vetores-linha $X_1,\ldots,X_\mathfrak n$ da matriz X. Assim, a desigualdade de Hadamard significa, geometricamente, que se mantivermos constantes ($\mathfrak n$ ão-nulos) os comprimentos desses vetores, $|\det X|$ torna-se máximo quando eles forem 2 a 2 ortogonais e, neste caso, o volume do paralelepípedo é o produto $\|X_1\|\ldots\|X_\mathfrak n\|$ dos comprimentos de suas arestas.