CEC00121 - Tópicos Especiais em Pesquisa Operacional I

Aula Prática 2 - Análise de Sensibilidade em uma Planilha

Samuel Campos

Instituto de Ciências da Sociedade e Desenvolvimento Regional- Universidade Federal Fluminense (ESR/UFF)

samuelcampos@id.uff.br

2 de outubro de 2018

Efetuando Análise de Sensibilidade em uma Planilha

- Verificando Mudanças Individuais no Modelo
- Executar Sistematicamente Análise de Sensibilidade
- Usando o Relatório de Sensibilidade para Executar a Análise de Sensibilidade
- Analisando a sensibilidade em um gráfico
- Analisando Alterações Simultâneas

Seção 1

Efetuando Análise de Sensibilidade em uma Planilha

Samuel Campos (ESR-UFF)

Pesquisa Operacional

2 de outubro de 2018 3 / 55

A Análise de Sensibilidade

- Mudança nos coeficientes da função objetivo (*c_i*);
- Mudança nos coeficientes do lado direito da restrição (b_i)

A Wyndor Class Co. reformulou seu mix de produção, criando 2 novos produtos que podem ser produzidos em 3 de suas fábricas

Produto 1: porta de vidro de 2,5m com esquadria de alumínio

- Produto 2: janela duplamente adornada com esquadrias de madeira de $1,2m \times 1,8m$
 - O produto 1 requer parte da capacidade produtiva das fábricas 1 e 3.
 - O produto 2 deve ser produzido nas fábricas 2 e 3.
 - A empresa pode vender tanto quando for possível produzir.

Pelo fato de ambos os produtos competirem pela capacidade de produção da fábrica 3 não está claro qual o mix dos 2 produtos deve ser mais lucrativo.

- Considere o modelo original da Wyndor: Maximizar $Z = 3x_1 + 5x_2$, sujeito a: $x_1 \leq 4$ $2x_2 \leq 12$ $3x_1 + 2x_2 \leq 18$ $x_1 \geq 0, x_2 \geq 0$
- x₁:número de lotes da nova porta produzidos por semana;
 x₂: número de lotes da nova janela produzidos por semana.

- c₁ = 3 = lucro (em milhares de dólares) por lote do novo tipo de porta
- c2 = 5 = lucro (em milhares de dólares) por lote do novo tipo de janela
- Discutiremos a análise de sensibilidade em termos das mudanças nos lucros mostrados em vez das mudanças em c₁ e c₂;
- Representaremos esses lucros por:
 - P_D = lucro por lote de portas atualmente introduzidos na célula C4
 - P_Q = lucro por lote de janelas atualmente introduzidos na célula D4

Efetuando Análise de Sensibilidade em uma Planilha

Mudanças nos coeficientes da função objetivo

Métodos de execução da análise de sensibilidade

- Verificar o efeito de uma mudança individual no modelo simplesmente fazendo a mudança na planilha e recalculando.
- Gerar sistematicamente uma tabela em uma única planilha que mostre o efeito de uma série de mudanças em um ou dois parâmetros do modelo.
- Obter e aplicar o relatório de sensibilidade do Excel.

Subseção 1

Verificando Mudanças Individuais no Modelo

- Suponha que a gerência da Wyndor estivesse insegura em relação a quanto seria o lucro por lote de portas (PD).
- O lucro real poderia se desviar do valor estimado de R\$3.000
 - Intervalo entre R\$ 2.000 e R\$ 5.000 é considerado razoavelmente provável

Verificando Mudanças Individuais no Modelo

	Α	В	С	D	E	F	G
1		O problema	de mix de pr	odutos da W	yndor G	alas	ss Co.
2		-					
3			Portas	Janelas			
4		Lucro por lote	US\$ 2.000	US\$ 5.000			
5					Horas		Horas
6			Horas utilizadas p	or lote produzido	utilizadas		disponíveis
7		Fábrica 1	1	0	2	<=	4
8		Fábrica 2	0	2	12	<=	12
9		Fábrica 3	3	2	18	<=	18
10							
11			Portas	Janelas			Lucro total
12		Lotes produzidos	2	6			US\$ 34.000

■ FIGURA 6.9 O problema revisado da Wyndor, no qual a estimativa do lucro por lote de portas foi diminuída, passando de *PD* US\$ 3.000 para *PD* US\$ 2.000, mas sem causar mudança na solução ótima para o *mix* de produtos.

Figura 1:

Verificando Mudanças Individuais no Modelo

- Não há nenhuma alteração na solução ótima para o mix de produtos (Figura 1).
- Alterações:
 - O novo valor de PD na célula C4
 - Diminuição de R\$ 2.000 no lucro total (célula G12) um dos dois lotes de portas produzidos por semana fornecer R\$ 1.000 a menos de lucro.
- Em virtude de a solução ótima não se alterar, a estimativa original de PD = R\$ 3.000 pode ser consideravelmente muito alta sem invalidar a solução ótima do modelo

Verificando Mudanças Individuais no Modelo

O que aconteceria se essa estimativa fosse muito baixa?
PD = R\$ 5.000.

Verificando Mudanças Individuais no Modelo

	A	В	С	D	E	F	G
1		O problema	de mix de pr	odutos da W	yndor C	ala	ss Co.
2		-					
3			Portas	Janelas			
4		Lucro por lote	US\$ 5.000	US\$ 5.000			
5					Horas		Horas
6			Horas utilizadas p	or lote produzido	utilizadas		disponíveis
7		Fábrica 1	1	0	2	<=	4
8		Fábrica 2	0	2	12	<=	12
9		Fábrica 3	3	2	18	<=	18
10							
11			Portas	Janelas			Lucro total
12		Lotes produzidos	2	6			US\$ 40.000

■ FIGURA 6.10 O problema revisado da Wyndor, no qual a estimativa de lucro por lote de portas foi aumentada de *PD* US\$ 3.000 para *PD* US\$ 5.000, mas sem alterar a solução ótima para o *mix* de produtos.

Figura 2:

Image: A matrix

- Não há nenhuma modificação na solução ótima (Figura 2).
- O intervalo de valores de PD sobre o qual a solução ótima permanece ótima (isto é, o intervalo possível para a solução permanecer ótima) abrange o intervalo que vai de R\$ 2.000 a R\$ 5.000 e pode se estender ainda mais.

Verificando Mudanças Individuais no Modelo

- PD é um parâmetro relativamente insensível:
 - o valor original de PD = R\$ 3.000 ser alterado consideravelmente em ambas as direções sem modificar a solução ótima.
- Não é necessário definir essa estimativa com grande precisão para se ter confiança de que o modelo está fornecendo a solução ótima correta.
- Se houver grande possibilidade de que o verdadeiro valor de PD acabe ficando até fora desse intervalo abrangente de R\$ 2.000 a R\$ 5.000, seria interessante investigar-se mais a esse respeito.

- Quão maior ou menor poderia ser PD antes de a solução ótima mudar?
- A solução ótima mudaria caso PD fosse alterado até atingir PD = R\$ 10.000.
- Essa mudança ocorre em algum ponto entre R\$ 5.000 e R\$ 10.000 durante o processo de aumento de PD.

Verificando Mudanças Individuais no Modelo

	A	В	С	D	E	F	G
1		O problema	de mix de pr	odutos da W	yndor C	Gla	ss Co.
2							
3			Portas	Janelas			
4		Lucro por lote	US\$ 10.000	US\$ 5.000			
5					Horas		Horas
6			Horas utilizadas p	or lote produzido	utilizadas		disponíveis
7		Fábrica 1	1	0	4	<=	4
8		Fábrica 2	0	2	6	<=	12
9		Fábrica 3	3	2	18	<=	18
10							
11			Portas	Janelas			Lucro total
12		Lotes produzidos	4	3			US\$ 55.000

■ FIGURA 6.11 O problema revisado da Wyndor no qual a estimativa do lucro por lote de portas passou de *PD* US\$ 3.000 para *PD* US\$ 10.000, o que resulta em uma mudança da solução ótima para o *mix* de produtos.

Figura 3:

► 4 Ξ

Image: A matrix

Subseção 2

Executar Sistematicamente Análise de Sensibilidade

Samuel Campos (ESR-UFF)

Pesquisa Operacional

2 de outubro de 2018 19 / 55

Executar Sistematicamente Análise de Sensibilidade

O Solver Table

- Mostra os resultados da mudança de células e/ou certas células de saída para vários valores experimentais em uma célula de dados.
- Para cada valor experimental na célula de dados, o Solver é chamado para resolver novamente o problema.
- O Solver Table (ou qualquer outro módulo adicional comparável em Excel) oferece uma maneira sistemática de se realizar análise de sensibilidade e depois mostrar os resultados para gerentes e outros que não estão familiarizados com os aspectos mais técnicos da análise de sensibilidade.

Executar Sistematicamente Análise de Sensibilidade

Usando o Solver Table

- Expanda primeiramente a planilha original (Figura 1) para fazer uma tabela com os cabeçalhos (Figuras 4).
- Na primeira coluna da tabela (células B19:B28), liste os valores experimentais das células de dados (o lucro por lote de portas). Deixar em banco a primeira linha (célula B18).
- Os cabeçalhos das colunas seguintes especificam qual saída será analisada.
 - Para cada uma dessas colunas, use a primeira linha da tabela (células C18:E18) para escrever uma equação que configure o valor em cada uma dessas células igual à célula relevante que muda ou célula de saída
 - As células de interesse são LotesdePortasProduzidas (Cl2), LotesdeJanelasProduzidas (D12) e LucroTotal (Gl2), de modo que as equações para C18:E18 sejam aquelas mostradas abaixo da planilha da Figura (4).

Executar Sistematicamente Análise de Sensibilidade

	A	В	С	D	E	F	G
1		O problema	de mix de pr	rodutos da	Wyndor	Gla	ss Co.
2							
3			Portas	Janelas			
4		Lucro por lote	US\$ 3.000	US\$ 5.000			
5					Horas		Horas
6			Horas utilizadas p	or lote produzido	utilizadas		disponíveis
7		Fábrica 1	1	0	2	<=	4
8		Fábrica 2	0	2	12	<=	12
9		Fábrica 3	3	2	18	<=	18
10							
11			Portas	Janelas			Lucro total
12		Lotes produzidos	2	6	1		US\$ 36.000
13							
14							
15							
16		Lucro por lote	Lotes ótimos	s produzidos	Lucro		
17		de portas	Portas	Janelas	total		Selecione
18			2	6	US\$ 36.000		estas células
19		US\$ 1.000					(B18:E28),
20		US\$ 2.000					antes de
21		US\$ 3.000					selecionar o
22		US\$ 4.000					Solver Table
23		US\$ 5.000					/
24		US\$ 6.000			-		
25		US\$ 7.000					
26		US\$ 8.000					
27		US\$ 9.000					
28		US\$ 10.000					

	С	D	E
16	Lotes ótimo	s produzidos	Lucro
17	Portas	Janelas	Total
18	=LotesdePortasProduzidas	=LotesdeJanelasProduzidas	=LucroTotal

Figura 4:

Executar Sistematicamente Análise de Sensibilidade

- Selecione Solver Table do menu Suplementos (após ter instalado esse módulo adicional)
- Coloque em "Column input cell "a célula de entrada da coluna (C4), que se refere à célula de dados que está sendo alterada na primeira coluna da tabela.
 - O campo "Row input cell" deve ficar vazio;
- Clique no botão OK.
- Para cada valor experimental listado na primeira coluna da tabela (Figura 4) para a célula de dados de interesse, o Excel recalcula o problema usando o Solver e, a seguir, preenche os valores correspondentes nas demais colunas das tabelas.
- Os números na primeira linha da tabela provêm da solução original na planilha antes de o valor original na célula de dados ter sido modificado.

Executar Sistematicamente Análise de Sensibilidade

	A	В	С	D	E	F	G
1		O problema d	le mix de pro	odutos da W	/yndor G	las	s Co.
2							
3			Portas	Janelas			
4		Lucro por lote	US\$ 3.000	US\$ 5.000			
5					Horas		Horas
6			Horas utilizadas p	or lote produzido	utilizadas		disponíveis
7		Fábrica 1	1	0	2	<=	4
8		Fábrica 2	0	2	12	<=	12
9		Fábrica 3	3	2	18	<=	18
10							
11			Portas	Janelas			Lucro total
12		Lotes produzidos	2	6			US\$ 36.000
13							
14							
15							
16		Lucro por lote	Lotes ótimos	produzidos	Lucro		
17		de portas	Portas	Janelas	total		
18			2	6	US\$ 36.000		
19		US\$ 1.000	2	6	US\$ 32.000		
20		US\$ 2.000	2	6	US\$ 34.000		
21		US\$ 3.000	2	6	US\$ 36.000		
22		US\$ 4.000	2	6	US\$ 38.000		
23		US\$ 5.000	2	6	US\$ 40.000		
24		US\$ 6.000	2	6	US\$ 42.000		
25		US\$ 7.000	2	6	US\$ 44.000		
26		US\$ 8.000	4	3	US\$ 47.000		
27		US\$ 9.000	4	3	US\$ 51.000		
28		US\$ 10.000	4	3	US\$ 55.000		

FIGURA 6.13 Uma aplicação do Solver Table mostra o efeito de se variar sistematicamente a

Samuel Campos (ESR-UFF)

Pesquisa Operacional

24 / 55

Executar Sistematicamente Análise de Sensibilidade

- A Figura (5) revela que a solução ótima permanece a mesma no intervalo que vai de PD = R\$ 1.000 a PD = R\$ 7.000,
- Ocorre uma alteração em algum ponto entre R\$ 7 .000 e R\$ 8.000.
- Poderíamos considerar sistematicamente valores de PD entre R\$ 7.000 e R\$ 8.000 para determinar mais precisamente onde a solução ótima muda.
 - Isso não é necessário: podemos determinar por meio do relatório de sensibilidade do Excel exatamente onde a solução ótima muda.
- A metodologia é a mesma para PW (célula D4).
- O Solver Table pode ser usado dessa maneira para investigar o efeito de se mudar qualquer célula de dados no modelo, inclusive qualquer célula em HorasDisponíveis (G7:G9) ou HorasUtilizadasPorLoteProduzido (C7 :D9).

< □ > < @ >

Executar Sistematicamente Análise de Sensibilidade

Verificando Mudanças Bidirecionais no Modelo

- Ao usar as estimativas originais para PD (R\$ 3.000) e PW (R\$ 5.000), a solução ótima indicada pelo modelo (Figura 1) tem alto peso no sentido de produzir janelas (seis lotes por semana) em vez de portas (somente dois lotes por semana).
- A direção da Wyndor está preocupada em relação a esse desequilíbrio e acha que o problema poderia ser que a estimativa para PD esteja muito baixa e a estimativa para PW muito alta.
- Questão: Se as estimativas são de fato nesse sentido, isso levaria a um mix de produtos mais equilibrado?
 - A <u>razão entre PD e PW é a relevante</u> na determinação do mix de produtos ótimo.
 - Pequenas alteração na razão PD/PW tem poucas chances de alterar o mix de produtos.

Executar Sistematicamente Análise de Sensibilidade

- Uma versão bidirecional do Solver Table fornece uma maneira de investigar de forma sistemática o efeito se as estimativas introduzidas nas duas células de dados forem simultaneamente imprecisas.
 - Dois é o número máximo de células de dados que pode ser considerado simultaneamente pelo Solver Table.
 - O Solver Table mostra os resultados em uma única célula de saída para os diversos valores experimentais nas duas células de dados.

- Efeito de se aumentar PD e diminuir PW ao mesmo tempo.
- Veremos o efeito sobre o lucro total. O Solver Table mostra como o LucroTotal (G12) da Figura (1) varia ao longo de um intervalo de valores experimentais nas duas células de dados, LucroPorLote (C4:D4).
- O Solver vai ser chamado para recalcular o problema para cada par de valores experimentais.

Executar Sistematicamente Análise de Sensibilidade

- Expanda a planilha original (Figura 1) para fazer uma tabela com cabeçalhos de coluna e linha conforme mostrados nas linhas 16-21 da planilha da Figura (6).
- No canto superior esquerdo da tabela (C17), escreva uma equação (=Lucro Total) que se refere à célula-alvo.
- Na primeira coluna da tabela (coluna C abaixo da equação na célula C17), insira vários valores experimentais para a primeira célula de dados de interesse (o lucro por lote de portas).
- Na primeira linha da tabela (linha 17, à direita da equação na célula C17), insira vários valores experimentais para a segunda célula de dados de interesse (o lucro por lote de janelas).

(B)

Executar Sistematicamente Análise de Sensibilidade

- Selecione toda a tabela (C17:H21)/ Solver Table do menu Suplementos
- Na caixa de diálogo indique quais células de dados estão sendo alteradas simultaneamente.
 - "Column Input": célula C4; refere-se à célula de dados cujos vários valores experimentais são listados na primeira coluna da tabela (C18:C21)
 - "Row Input ": célula D4; se refere à célula de dados cujos vários valores experimentais são listados na primeira linha da tabela (D17:H17).
- Para cada par de valores experimentais para as duas células de dados, o Excel recalcula o problema usando o Solver e depois preenche no ponto correspondente na tabela (Figura 7).

Executar Sistematicamente Análise de Sensibilidade

	Α	В	С	D	E	F	G	Н	I
1		O problema o	de mix de l	produtos da	Wyndoi	r Glass	Co.		
2									
3			Portas	Janelas					
4		Lucro por lote	US\$ 3.000	US\$ 5.000					
5					Horas		Horas		
6			Horas utilizadas	por lote produzido	utilizadas		disponíveis		
7		Fábrica 1	1	0	2	<=	4		
8		Fábrica 2	0	2	12	<=	12		
9		Fábrica 3	3	2	18	<=	18		Selecione
10									estas células
11			Portas	Janelas			Lucro Total		(C17:H21),
12		Lotes produzidos	2	6			US\$ 36.000		antes de
13									selecionar
14								/	o Solver Table.
15									
16		Lucro Total			Lucro p	or lote de	janelas		
17			US\$ 36.000	US\$ 1.000	US\$ 2.000	US\$ 3.00	00 US\$ 4.000	US\$ 5.000	
18			US\$ 3.000						
19		Lucro por lote	US\$ 4.000						
20		de portas	US\$ 5.000						
21			US\$ 6.000						

	Nome da faixa de célula	Células
Total	Lucro Total	G12

Samuel	Cam	pos (ESR-U	UFF)	
				,	

17 =Lucro

Executar Sistematicamente Análise de Sensibilidade

	В	С	D	E	F	G	Н
16	Lucro Total			Lucro por Lote de Janelas			
17		US\$ 36.000	US\$ 1.000	US\$ 2.000	US\$ 3.000	US\$ 4.000	US\$ 5.000
18		US\$ 3.000	US\$ 15.000	US\$ 18.000	US\$ 24.000	US\$ 30.000	US\$ 36.000
19	Lucro por Lote	US\$ 4.000	US\$ 19.000	US\$ 22.000	US\$ 26.000	US\$ 32.000	US\$ 38.000
20	de Portas	US\$ 5.000	US\$ 23.000	US\$ 26.000	US\$ 29.000	US\$ 34.000	US\$ 40.000
21		US\$ 6.000	US\$ 27.000	US\$ 30.000	US\$ 33.000	US\$ 36.000	US\$ 42.000

■ FIGURA 6.17 Uma aplicação bidimensional do Solver Table que mostra o efeito sobre o lucro total ótimo causado pela variação sistemática das estimativas de lucros por lote de portas e janelas para o problema da Wyndor.

Figura 7:

Image: Image:

Executar Sistematicamente Análise de Sensibilidade

- Para mostrar os resultados de várias células em mutação e/ou células de saída dentro de uma célula da tabela.
 - Usar o símbolo &
 - Alterar a célula C25 (ou C31) para:
 = "("& LotesdePortasProduzidas & ","& LotesdeJanelasProduzidas & ")"
 - O caractere & informa ao Excel para concatenar, de modo que o resultado será um parêntese de abertura, seguido pelo valor contido em LotesdePortasProduzidas (C12), depois uma vírgula e o conteúdo de LotesdeJanelasProduzidas (D12) e, finalmente, um parêntese de fechamento.
 - Se LotesdePortasProduzidas = 2 e LotesdeJanelasProduzidas = 6, o resultado será (2,6). Portanto, os resultados causados pela modificação de ambas as células são exibidos dentro de uma única célula da tabela.

Executar Sistematicamente Análise de Sensibilidade

	В	С	D	E	F	G	н
24	24 Lucro total (Portas, Janelas)			Lucro po			
25		(2.6)	US\$ 1.000	US\$ 2.000	US\$ 3.000	US\$ 4.000	US\$ 5.000
26		US\$ 3.000	(4.3)	(4.3)	(2.6)	(2.6)	(2.6)
27	Lucro por lote	US\$ 4.000	(4.3)	(4.3)	(2.6)	(2.6)	(2.6)
28	de portas	US\$ 5.000	(4.3)	(4.3)	(4.3)	(2.6)	(2.6)
29		US\$ 6.000	(4.3)	(4.3)	(4.3)	(4.3)	(4.3)

	С
25	="(" & LotesdePortasProduzidas & "," & LotesdeJanelasProduzidas & ")"

Solver Table		×
Row input cell:	D4	-
Column input cell:	C4	_
	Cancel	ок

Nome da Faixa de Células	Células
LotesdePortasProduzidas	C12
LotesdeJanelasProduzidas	D12

■ FIGURA 6.18 Uma aplicação bidimensional do Solver Table que mostra o efeito sobre o *mix* de produtos ótimo causado pela variação sistemática das estimativas de lucros por lote de portas e ianelas para o problema da Wyndor.

Samuel Campos (ESR-UFF)

Subseção 3

Usando o Relatório de Sensibilidade para Executar a Análise de Sensibilidade

Samuel Campos (ESR-UFF)

Pesquisa Operacional

2 de outubro de 2018 35 / 55

- Vimos quanto a estimativa inicial de P_D poderia se afastar R\$ 3.000 antes de a solução ótima atual, $(x_1, x_2) = (2, 6)$, mudar.
- Vimos que a solução ótima mudaria entre entre R\$ 7.000 e R\$ 8.000 (Figura 5).
- Também vimos que se a estimativa inicial de R\$ 3.000 para PD fosse muito alta em vezde muito baixa, PD teria de ser diminuído para algo abaixo de R\$ 1.000 antes de a solução ótima mudar.

Usando o Relatório de Sensibilidade para Executar a Análise de Sensibilidade

Células Ajustáveis

		Valor	Custo	Coeficiente	Acréscimo	Decréscimo
Célula	Nome	Final	Reduzido	Objetivo	Possível	Possível
\$C\$12	LotesdePortasProduzidas	2	0	3.000	4.500	3.000
\$D\$12	LotesdeJanelasProduzidas	6	0	5.000	1E+30	3.000

■ FIGURA 6.19 Parte do relatório de sensibilidade gerado pelo Excel Solver para o problema original da Wyndor (Figura 6.8), no qual as três últimas colunas identificam os intervalos para que a solução permaneça ótima para os lucros por lote de portas e janelas.

Figura 9: Relatório de Sensibilidade

 No relatório de sensibilidade da Figura (9), a linha LotesdePortasProduzidas nesse fornece as informações:

Valor atual de PD:3.000Acréscimo possível de PD:4500. Portanto, $P_D \le 3.000 + 4.500 = 7.500$ Decréscimo possível em PD:3.000. Portanto, $P_D \ge 3.000 - 3.000 = 0$ Intervalo possível para solução permanecer ótima para P_D :

 $0 \le P_D \le 7.500$

Subseção 4

Analisando a sensibilidade em um gráfico

Samuel Campos (ESR-UFF)

Pesquisa Operacional

2 de outubro de 2018 39 / 55

Analisando a sensibilidade Graficamente

Analisando a sensibilidade por meio gráfico

- Para o valor original PD = 3.000, a reta cheia na Figura (10) mostra a inclinação da função objetivo passando por (2,6).
- Na parte inferior do intervalo possível para a solução permanecer ótima:
 - PD = 0, a reta da função objetivo que passa por (2,6) agora é a reta B, de modo que todo ponto sobre o segmento de reta entre (0,6) e (2,6) seja uma solução ótima.
 - Para qualquer valor PD < 0, a reta da função objetivo terá girado ainda mais de maneira que (0, 6) se transforma na única solução ótima.

A B A A B A

Analisando a sensibilidade Graficamente

Analisando a sensibilidade por meio gráfico

- Na extremidade superior do intervalo possível:
 - PD = 7.500: a reta da função objetivo que passa por (2,6) se toma a reta C, de modo que qualquer ponto sobre o segmento de reta entre (2, 6) e (4, 3) se transforma em uma solução ótima.
 - Para qualquer valor PD > 7.500, a reta da função objetivo é ainda mais inclinada que a reta C, de forma que (4,3) se tome a única solução ótima.
- A solução ótima inicial (x₁, x₂) = (2, 6) permanece ótima somente enquanto 0 ≤ P_D ≤ R\$7.500.

Analisando a sensibilidade Graficamente

■ FIGURA 6.20 As duas retas tracejadas que passam por retas cheias de limite de restrição são as retas de função objetivo quando P_0 (o lucro por lote de portas) encontra-se em um ponto extremo de seu intervalo possível para a solução permanecer ótima, $0 \le P_0 \le 7.500$, depois tanto a reta quanto qualquer outra reta de função objetivo passe intervalo ainda resultam em $(x_1, x_2) = (2, 6)$ como uma

Samuel Campos (ESR-UFF)

Pesquisa Operacional

2 de outubro de 2018

42 / 55

Analisando a sensibilidade Graficamente

Conclusão

- O intervalo possível para a solução permanecer ótima para PD é 0 ≤ P_D ≤ R\$7.500: (x₁, x₂) = (2,6) permanece ótimo ao longo desse intervalo, mas não além deste.
- Quando $P_D = O$ ou $P_D = R$ \$7.500, há múltiplas soluções ótimas, porém $(x_1, x_2) = (2, 6)$ ainda é uma delas.
- Com um intervalo grande em torno da estimativa inicial de R\$ 3.000 (P_D = R\$3.000) para o lucro por lote de portas, podemos ficar relativamente confiantes na obtenção da solução ótima correta para um lucro real.

Subseção 5

Analisando Alterações Simultâneas

Samuel Campos (ESR-UFF)

Pesquisa Operacional

2 de outubro de 2018 44 / 55

- O que aconteceria se as estimativas para P_D (R\$ 3.000) e P_W (R\$ 5.000) fossem simultaneamente, muito baixa e muito alta?
- Quão distantes estariam as estimativas antes que a solução ótima atual, (x₁, x₂) = (2,6) mudasse?
- Vimos que se P_D aumentasse em R\$ 2.000 (de R\$ 3.000 para R\$ 5.000) e P_W diminuísse em R\$ 1.000 (de R\$ 5.000 para R\$ 4.000), a solução ótima permaneceria a mesma (Figura 7).
- O relatório de sensibilidade permite determinar qual seria as alterações possíveis em P_D e P_W (Figura 9)

Analisando Alterações Simultâneas

Regra dos 100% para Alterações Simultâneas nos Coeficientes da Função Objetivo

- Se forem feitas alterações simultâneas nos coeficientes da função objetivo;
- Calcule a porcentagem de alteração permissível (acréscimo ou decréscimo) para cada uma delas de modo que o coeficiente fique dentro de seu intervalo possível para a solução permanecer ótima.
- Se a soma das alterações porcentuais <u>não exceder</u> 100%, a solução ótima inicial certamente permanecerá ótima.
- Se a soma efetivamente <u>exceder</u> 100%, então não podemos ter certeza se permanece ou não ótima.

Analisando Alterações Simultâneas

- A Regra dos 100% não expressa o que acontece se a soma da porcentagem efetivamente exceder 100%.
- Dependerá das direções das mudanças nos coeficientes.
- São as <u>razões dos coeficientes</u> que são relevantes na determinação da solução ótima;
- A solução ótima inicial poderia de fato permanecer ótima mesmo quando a soma das alterações porcentuais exceder muito o valor de 100% caso as mudanças nos coeficientes sejam na mesma direção.
- Exceder 100% pode ou não mudar a solução ótima, porém desde que 100% não seja ultrapassado, a solução ótima inicial permanecerá ótima.

- Podemos usar de forma segura todo acréscimo ou decréscimo possíveis (Figura 9) em um único coeficiente de função objetivo apenas se nenhum dos demais coeficientes tiver mudado.
- Alterações simultâneas nos coeficientes: observar a porcentagem do acréscimo ou decréscimo possíveis.

Analisando Alterações Simultâneas

Exemplo

- Consideremos o problema da Wyndor e as informações do relatório de sensibilidade (Figura 9).
- Suponha que a estimativa de P_D tenha aumentado de R\$ 3.000 para R\$ 4.500 enquanto a estimativa para P_W tenha diminuído de R\$ 5.000 para R\$ 4.000.

Percentual de variação possível

$$100 igg(rac{|\mathsf{Novo valor} - \mathsf{Valor atual}|}{\mathsf{Decréscimo ou Acréscimo Possível}^a} igg) \% = \%$$

^aSe a variável sofrer um acréscimo (decréscimo) deve ser utilizado o respectivo valor da coluna acréscimo(decréscimo) na tabela de análise de sensibilidade do Excel.

< 47 ▶

Analisando Alterações Simultâneas

P_D : R\$3.000 \rightarrow R\$4.500 (Acréscimo)

Percentual de variação possível =
$$100 \left(\frac{4.500 - 3.000}{4.500}\right)\% = 33,3\%$$

Analisando Alterações Simultâneas

P_D : R\$3.000 \rightarrow R\$4.500 (Acréscimo)

Percentual de variação possível =
$$100\left(\frac{4.500-3.000}{4.500}
ight)\%=33,3\%$$

P_W : R\$5.000 \rightarrow R\$4.000 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{5.000 - 4.000}{3.000} \right) \% = 33,3\%$$

Analisando Alterações Simultâneas

P_D : R\$3.000 \rightarrow R\$4.500 (Acréscimo)

Percentual de variação possível =
$$100 \left(\frac{4.500 - 3.000}{4.500} \right) \% = 33,3\%$$

P_W : R\$5.000 \rightarrow R\$4.000 (Decréscimo)

Percentual de variação possível = $100 \left(\frac{5.000 - 4.000}{3.000} \right) \% = 33,3\%$

- Soma = 66,6%: não excede os 100%:
 - A solução ótima original (x₁, x₂) = (2, 6) sem dúvida nenhuma ainda será ótima;
 - Já havíamos descoberto anteriormente (Figura 8).

< □ > < 同 > < 回 > < 回 > < 回 >

Analisando Alterações Simultâneas

Exemplo 2

- Suponha que:
 - A estimativa de P_D aumente de R\$ 3.000 para R\$ 6.000;
 - A estimativa para P_W diminua de R\$ 5.000 para R\$ 3.000.
 - Por meio da regra dos 100%, é possível afirma que a solução ótima permanecerá inalterada?

Analisando Alterações Simultâneas

P_D : R\$3.000 \rightarrow R\$6.000 (Acréscimo)

Percentual de variação possível =
$$100 \left(\frac{6.000 - 3.000}{4.500} \right) \% = 66,6\%$$

Analisando Alterações Simultâneas

$$P_D$$
: R \$3.000 \rightarrow R \$6.000 (Acréscimo)

Percentual de variação possível =
$$100 \left(\frac{6.000 - 3.000}{4.500} \right)\% = 66,6\%$$

P_W : R\$5.000 \rightarrow R\$3.000 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{5.000 - 3.000}{3.000} \right)\% = 66,6\%$$

Analisando Alterações Simultâneas

$$P_D$$
: R \$3.000 \rightarrow R \$6.000 (Acréscimo)

Percentual de variação possível =
$$100 \left(\frac{6.000 - 3.000}{4.500} \right) \% = 66,6\%$$

P_W : R\$5.000 \rightarrow R\$3.000 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{5.000 - 3.000}{3.000} \right) \% = 66,6\%$$

• Soma = 133,3%: excede os 100%:

- Não podemos afirmar que a solução ótima original (x₁, x₂) = (2,6) ainda será ótima;
- Já havíamos descoberto anteriormente (Figura 8) que a nova solução ótima será $(x_1, x_2) = (4, 3)$.

Analisando Alterações Simultâneas

Exemplo 3

- A soma das porcentagens das mudanças permissíveis exceder a 100% não significa automaticamente que a solução ótima mudará!
 - A estimativa de P_D diminua de R\$ 3.000 para R\$ 1.500;
 - A estimativa para P_W diminua de R\$ 5.000 para R\$ 2.500.
 - Por meio da regra dos 100%, é possível afirma que a solução ótima permanecerá inalterada?

Analisando Alterações Simultâneas

$$P_D$$
: R \$3.000 \rightarrow R \$1.500 (Decréscimo)

Percentual de variação possível =
$$100\left(\frac{3.000 - 1.500}{3.000}\right)\% = 50,0\%$$

Analisando Alterações Simultâneas

$$P_D$$
: R \$3.000 \rightarrow R \$1.500 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{3.000 - 1.500}{3.000} \right)\% = 50,0\%$$

P_W : R\$5.000 \rightarrow R\$2.500 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{5.000 - 2.500}{3.000} \right) \% = 83,3\%$$

Analisando Alterações Simultâneas

$$P_D$$
: R\$3.000 \rightarrow R\$1.500 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{3.000 - 1.500}{3.000} \right)\% = 50,0\%$$

P_W : R\$5.000 \rightarrow R\$2.500 (Decréscimo)

Percentual de variação possível =
$$100 \left(\frac{5.000 - 2.500}{3.000} \right)\% = 83,3\%$$

• Soma = 103,3%: excede os 100%:

- Pela regra dos 100% não podemos afirmar que a solução ótima original ainda é ótima;
- Entretanto, a solução ótima original permanece ótima.
 - Isso acontece toda vez que mudanças proporcionais são feitas em todas as estimativas de lucro, que conduzirão automaticamente à mesma solução ótima.

Samuel Campos (ESR-UFF)

Analisando Alterações Simultâneas

Outros Tipos de Análise de Sensibilidade

- A metodologia anterior para outras mudanças no modelo (lados direitos das restrições funcionais ou coeficientes nas restrições funcionais) é praticamente a mesma daquela usada para os coeficientes da função objetivo;
- O relatório de sensibilidade também fornece os preços-sombra, o efeito de se mudar o lado direito de qualquer restrição funcional única;
- Ao alterar uma série de lados direitos ao mesmo tempo, também há uma "regra dos 100%" análoga.